Issue Number 69

- ISSN # 0748-9331

September/October 1994

Small System Support
PC/XT Corner
Z-System Corner 11
Mr. Kaypro
Real Computing
Support Groups
Dr. S-100
Moving Forth Part 6
Centerfold - S-100 IDE

The Computer Corner

US$4.00

ICJ - For Having Fun With Any Computer!

Peripheral Technology
Specials

- |486SLC 33MHZ Motherboard w/ CPU $139.00

486SLC/50MHZ IBM,ISA,CPU, 0K $199.00

- - |486SLC/66MHZ IBM_VESA,CPU, Math$299.00

| - 1IMB SIMM 70ns DRAM

1250 E Piedmont Rd.

‘| IBM boards - Made in USA - 3YR warranty

B $47.00
- }386MB Samsung IDE Drive $229.00
420MB Connor IDE Drive $289.00

- |546MB Maxtor IDE Drive $379.00
| IDE/Floppy/Serial/Parallel $24.95
- 11.44MB TEAC Floppy $49.95
" |Mini Tower, 200W, LED readout $79.00

| Panasonic Dual Speed CD ROM $169.00
VGA Card ET4000-1MB, 1280x1024 $99.00

- | VGA Monitor WEN .28mm 1024x768 $249.00

'UPS Ground $7.00 on most items. Tower &
monitor $12.00.
404/973-2156

Marietta, GA 30062 FAX: 404/973-2170

Cross-Assemblers . iowassson
SImU|at0rS as low as $100.00
Cross-Disassemblers asowa 1000
DeveIoPer Packages

as low as $200.00(a $50.00 Savings,

A New Project)
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.

Get It To Market—-FAST
Don't wait until the hardware is finished to debug your software. Qur
Simulators can test your program logic before the hardware is built.
No Source!

Aminor glitch has shown up in the firmware, and you can't find the original

source program. Qur line of disassemblers can heip you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'il be ready for anything.
Quality Solutions

PseudoCorp has been providing quality solutions for microprocessor
problems since 1985.

BROAD RANGE OF SUPPORT
e Currently we support the foliowing microprocessor families (with
more in development):

intel 8048 RCA 1802,06 Intel 8051 Intel 8096
Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motoroia 6809 MOS Tech 6502 WDC 65C02

Rockwell 65C02 Intel 8080,85 Zilog Z80 NSC 800
Hitachi HD64180 Motoroia 68000,8 Motorola 68010 Intel 80C196
e Al products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp
Professional Development Products Group
921 Country Club Road, Suite 200
Eugene, OR 97401
(503) 683-9173 FAX: (503) 683-9186 BBS: (503) 683-9076

r,editor,andasembler,aswellasaninterpretive mode
 to enhance debugging, profiling, and tracing.

" | Asaff“open” language, Forth lets you build new control-flow

languages do not.

- Forth Dimensions is the magazine to help you along this
journey. Itis one of the benefits you receive asamember of the

| Membership dues begin at $40 for the U.SA. and Canada.
- Student rates begin at $18 (with valid student LD.).

with us to discover the shortest path between
ing problems and efficient solutions.

th programming language is a model of simplicity:
16K itcanofferacomplete development systeminterms

structures, and other compiler-oriented extensions that closed

non-profit Forth Interest Group (FIG). Local chapters, the
GEnie™ForthRoundTable,andannual FORML conferencesare
alsosupported byFIG. Toreceive amail-order catalog of Forth
literature and disks, call 510-89-FORTH or write to:

Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.

‘GEnie is a trademark of General Electric.

SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)

ZCPR34 source code ($15)
BackGrounder-ii ($20)
ZMATE text editor ($20)
BDS C for Z-system (only $30)
DSD: Dynamic Screen Debugger ($50)
4DOS "zsystem" for MSDOS ($65)
ZMAC macro-assembler ($45 with printed manual)

Kaypro DSDD and MSDOS 360K FORMATS ONLY
Order by phone, mail, or modem and use
Check, VISA, or MasterCard. Please include
$3.00 Shipping and Handling for each order.

Sage Microsystems East
1435 Centre Street

Newton Centre MA 02159-2469
(617) 965-3552 (voice 7PM to 11PM)
(617) 965-7259 BBS

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consultant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriguez
Ronald W. Anderson
Helmut Jungkunz
Ron Mitchell
Dave Baldwin
Frank Sergeant
JW Weaver
Richard Rodman
Jay Sage
Tilmann Reh

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1993
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44
two years (12 issues). Send sub-
scription, renewals, address
changes, or advertising inquires to:
The Computer Journal, P.O. Box
535, Lincoln,CA 95648.

Registered Trademarks

it is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple i, 11+, fic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder ii,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket;
Nantucket, Inc. dBase, dBASE I, dBASE Ill, dBASE I
Plus, dBASE IV, Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar; MicroPro Inter-
national. IBM-PC, XT, and AT, PC-DOS; 1BM Corpora-
tion. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not specifi-
caily acknowledged in each occurrence.

The Computer Journal

Editor's Commentsccccceervuirrerreecrnncennenns eneeans
Reader to Reader.........ccccvvvvreeireennnnnes eenrranesnsnenssenns

Small System Supportooeeeeeeciiiiireenrce e,

6809 assembly language and Flex.
By Ronald W. Anderson.

(2407 @ B 070Y 1 111

Stepper Motors and Forth.
By Frank Sergeant.

Z-System Corner ll........ooeeeeeeivvrereemmmeecerrrreenrenenens

Intro to CP/M and Z-System, part 2.
By Ron Mitchell.

Dr. S-100.....ccciiiiriiririre e

Mail Bag.
By Herb R. Johnson.

Center Fold rereeesssesssssssnssneranse

S-100 IDE Project.
By Claude Palm, with editing by Herb R. Johnson.

Mr. Kaypro........ccccceinmenmrinncciinnnnsseensemmenmnsennnneenn

Advent decoder construction.
By Charles B. Stafford.

Real Computing.......cccceererinmnemmmmmmmnennsniininnenn.

Tiny-TCP and 32 bit news.
By Rick Rodman.

Moving Forth.............ciiiiiiiirecccinnree e,

Part 6: High level ZB0/CPM words.
By Brad Rodriguez.

Support Groups for the Classicsccccccceunnnnnnnne.

Support groups directory.

The Computer Comner tereerreseesesnreenmnsnsennesnrrrens

By Bill Kibler.

Issue Number 69 September/October 1994

..... 2

..... 3

.25

..29

EDITOR'S COMMENTS

~ Welcome to issue 69, a summer feast of
articles. Since many of you were gone or
busy having fun this summer, 7CJ is
playing catch up with our on going-ar-
ticles.

Your letters and comments start on the
next page. A real mixed bag of com-
ments this time. Certainly something for
everyone.

Ron Anderson gets started on doing 6809
assembly for the Flex system. Since there
are many readers still using Flex and
many more wanting to better understand
assembly, Ron is stepping in to help fill
that space between ones ears.

Frank Sergeant finishes his recent XT
travails by explaining how his Pygmy
Forth helped him do some stepper motor
activities. As usual we welcome your
versions of Frank’s Forth program steps
in other languages. However as you will
see, Frank makes it seem too simple to
be true.

Ron Mitchell steps up next with his sec-
ond installment of leading one into ZCPR
for the first time. Like Ron’s last entry
in the journal, this should be educational
and entertaining for all our readers. Now
Ron, it’s A> in the USA, EH> in Canada,
but what about Europe and Australia?

Dr. S-100 drops in with his mail bag and
tries to update our readers on the S-100
goings on. Herb doesn’t stop there, as he
co-authored (well mostly edited) the
Centerfold section. We talked about it
and now it is here, the S-100 IDE single
chip project. This elegant design deserves
your study and comments. Claude Palm
will have more to say next issue on his
newest single board Z180 project which
incorporates a version of the single chip
IDE interface. This shows of course how
using more current, but expensive de-

vices, makes multiple variations, simple
and usually cheaper to do than redesigns
using individual devices. Nice work
Claude and thanks.

Getting another big thanks for ever strug-
gling to keep our user’s Kaypros run-
ning like new, is Charles Stafford as Mr.
Kaypro. Chuck shows you how to layout
the Advent Decoder board and start sol-
dering. So get those soldering irons hot
and start wiring and burning.

Rick Rodman’s help with tying all our
systems together get some assistance as
he comments and shows us Tilmann
Reh’s RS232 to RS-485 interface.
Tilmann’s design is very nice since it
isolates the signal electrically and thus
prevents damaging your system, should
another in the group go south for the
winter. I know of one case where the
power supply ground was not right and
when the serial cables between this and
another unit were touched together (well
actually the person didn’t even get them
to touch) arcs and sparks went every-
where. Seems the grounds were some-
how about 115 Volts different (smarts a
bit) and thus blew most of the chips in
the system. Nice addition to the design
Tilmann!

Brad Rodriguez is still moving on with
instaliment number 6 of his Moving Forth
series. This installment completes the
Z80/CPM version of his brand new Camel
Forth. Next time Brad promises to give
us the 8051 version, which I know many
have been waiting for.

Since I received some comments on my
Forth support, I felt it is about time for a
little explanation of my interest in it. So
the Computer Corner is mostly on what
itis about polyFORTH I think you should
consider knowing about. I also throw in

some other tid bits of facts and fodder
for your consideration.

So that is it for issue 69. Packed as
always with goodies for your consump-
tion.

A Death in the Family!

As many of you know by now, the cre-
ator if you will, of CP/M is dead. Gary
Kildall died Monday, July 11, 1994. His
death appears to be a side effect of not
seeking medical help immediately after
suffering an head injury.

I had considered commenting more on
his work until I received The Z-Letter.
David McGlone reviewed his life and
activities so well I rather everyone just
got a Z-letter.

Catching Up...

I am still catching up from being gone
for most of two months. I believe I have
sent all back issues and should have all
renewals updated by the time you get
this. Should you think your request has
fallen through the cracks, please call
and see if I stuck your request in the
wrong “to do” pile. With that said, I am
also trying to get ahead and want any
articles to be here by the last week of
October, else it will be in issue 71, not
70!

So lastly..Enjoy! Bill Kibler.

The Computer Journal
PO Box 535
Lincoln, CA 95648-0535

(916) 645-1670
(800) 424-8825
Genie as B.Kibler
Compuserve: 71563,2243
E-mail: b kibler@Genie. geis.com

The Computer Journal / #69

READER to READER

Letters to the Editor
All Readers
MINI Articles

Dear Bill,

Look forward to many more issues of
TCJ. Debit my piece of plastic again,
another years worth please. (Airmail rates
please)

This (US$44-00) will run out at about
NZ$90-00. Hurts a bit I confess; but
then I'm paying by choice and figure
that if that’s what it costs to support an
old habit, so be it. (I can think of many
more expensive pursuits. Most if not all,
far less intellectual challenging/stimu-
lating.)

Read the article (Part 1 7CJ #64) ‘Small-
C? with great interest. While most is
out of my league; I think I grasped more
about the scope of ‘C” and its variations;
than I’d previously read in any one small
piece of print. Really looking forward to
the follow ups.

I see no mention yet, in JW Weaver’s
spot, detailing the Morrow user group,
or the support BBS. Both still alive and
well. Guess I might have to supply from
way down here if one of you, being closer,
don’t do so very soon.

Best wishes for ’94, Many Thanks, Paul
MacDiarmid, Rotorau, New Zealand.

Thanks Paul for your long distance sup-
port. Yup, changes in dollar sure can
make TCJ costly. I had to raise the rates
on all readers to make us break even.
Yet if I do too large of a issue I still can
loose money on the mailing costs over-
seas.

As to the Morrow user group, haven't
heard from them in long time, so if you
talk to any members, get them to send
me the latest information.

The Computer Journal / #69

So far all the ‘C’ follow up has been our
regular writers expressing their views
and comments. May start a beginning
section on ‘C’ and start requesting more
comments on where to go next. So far
seems like most readers just overly satu-
rated with the topic and are letting it
simmer for a while before starting on it
again. Time will tell. Thanks again for
hanging in there, Paul! Bill.

Dear Bill:

I program and use ‘antique 8 bit com-
puters’ for many things. They are an
Apple]{e and a Franklin Ace 1200. In
my opinion, they are far superior to IBM/
MSDOS machines. MSDOS systems are
Jjust CP/M systems that work with CP/M
86, a modified CPM 80 system for 16 bit
machines, and NOT a gung ho advanced
system as almost everyone believes.
When I want to, I can degrade to a Z80
system simply by rebooting my comput-
ers. I run Apple Pascal, DOS, ProDOS
and CPM2.2/CPAM 4.0 on these.

In TCJ issue #64, Jim Moore wrote you
a letter I would like to comment on.
First, I have always agreed 100% with
him about new versions of programs,
wasted space (on any CPM system), and
so forth. This, as well as being harder to
program, is why I will never degrade
myself by ‘upgrading’ to a : ~w system.
(I call it downgrading.)

Second, on the subject of CP/M soft-
ware. The Apple CP/M format is the
same as the TRS 80 (Radio Shack) for-
mat, which is an 8 bit format called
CPM 80. The most common version of
this is 2.20 and higher. 1 have found
some of this software in 1) The Public
Domain Exchange, 2) a Colorado user
club - Aces High, 3) a local software

liquidator (California’s largest) and now
at 4) Lambda Software (advertised in
your magazine).

Yours Truly, Daniel E. Wallace, Moun-
tain View, CA.

Thanks Daniel for those words, and do
you have the address for Aces High,
would like to put them in the support
group section if they are still active.

Yes upgrading on IBM clones can be a
nightmare, without any guarantee of
speed or utility improvements. It still
amazes me how often people think that
CP/M never really existed, or better yet
that DOS will be the first multi-user
system, whoops, what happen to MP/M
and CP/NET, guess just figments of our
imagination.

Oh well, some people never learn,
Thanks. Bill.

Dear Bill:

Here’s a column from May Computer
Shopper. Seems like this is something
you should know about; I sent your ad-
dress to Stan Veit.

Sincerely, Steve Brown, WSB Enter-
prises, Houston TX.

Thanks for the copy Steve, I let my Shop-
per subscription go many years ago when
it became a PC sales only magazine.
The article you indicated is Stan Veit's
TECH SECTION where he talked about
“Endangered Software” and mainly how
people are forgetting that other systems
are used by many people like us. I think
your interest was the fact that TCJ was
not mentioned by Stan. Well, I am a
little surprised too, since he and I talked

last year about him buying TCJ. We
didn't do the deal, because his objective
was to turn TCJ into a “beginners PC
user” magazine and thus killing off the
only magazine supporting these older
systems which he says no one is support-

ing.

Maybe Stan is having second thoughts
. about these older systems, since I have
not closed down TCJ as he thought I
would if I didn't go mostly PC based
articles. Proably, the problem really is
his contract with Ziff Davis and their

editors unwillingness to let him really

say what he wants, which I hope would
be more about us, but then Elliam Assoc,

which he did mention, sends a flyer tell-

ing about us with each of his orders. To

add more fuel to this mess, I have started
advertising in the classified section of
the shopper, where we will see if any-
body reads that part anymore.

Again, thanks and let me know if you
Jfind anymore areas I need to know about.
Bill Kibler.

Dear Bill,

Enclosed please find a check for $44.00
to cover the next 12 issues (two years) of
The Computer Journal. 1 first subscribed

.to TCJ at the urging of Chuck Stafford,
CKG (ChiefKaypro Guru) and HPHCW
(High Priest amoung Highly Certified
Wizards); it was one of the many pieces
of sagely advise I got from him.

I think providing support for the older
PC/XT platforms is a good move. These
systems, like their SS-50 and S-100 bus
predescessors and compatriots, have, in
turn, been abondoned by their manufac-
turers. A great many people still depend
on these machines and their relative
abundance and low-cost makes them
great “hobbyist” systems.

The Computer Journal is a great collec-
tion of material. It reflects the care and
varied interests of each of the Contribut-
ing Editors. Having served as Bulletin/
Newsletter editor for various archaeo-
logical organizations, I know how much
work is required to produce something
as large as TCJ as a one-person show.
Ignore the occasional Letter to the Edi-

tor complaining about typos, punctua-
tion, and the choice of colors for the
covers. These comments, although I'm
sure well meant, miss the mark. It’s the
information and ideas that are impor-
tant, not the occasional typos or mis-
placed quotation mark.

Cheers, Richard Estabrook, Tampa, FL.

Thanks for those words of support Rich-
ard. You are correct on the work load
around here and hopefully Chuck will
be able to help me out soon. Running
TCJ really is a full time job, yet the
money is not there to do that. So I try as
hard as I can, and sometimes must plain
old stop and send the issue to the printer.
I do that knowing it is the only way to
get six issues a year done and still handle
all the address changes, new subs, and
back issue orders. The paper work side
easily consumes 60% of my time. If our
readers renewed on time and I didn’t
have to send out so many notices and
Jlyers to get them to renew, I would
proably be able to catch a few extra
mistakes and typos.

On Chuck being a CKG; well he tries
hard to help our Kaypro users out. Like
me, Chuck does other things and can't
always be the perfect source of informa-
tion and services, but at least he is try-
ing. Yes, the PC/XT has been abandoned
and interestingly enough their cost are
now less than CP/M systems. At the last
swap I saw complete XT'’s going for 35
and 310 each (monitors extra). So for
collectors of old systems, stay with any-
thing but XT's right now, CP/M systems
are worth more.

And thanks for the letter and renewal,
Richard. Bill.

Dear Editor:

This letter is a follow up to my call on
your 800 number. I built a data link that
I operate between a Color Computer 3
and a PC. Evidently just about every PC
made can operate COM1 at high speed,
which the commercial system “laplink™
uses to transfer files between PC’s. When
set to a 2 Mhz clock rate the CoCo-3 will
reliably communicate at 57.6Kbaud. The
next fastest PC rate is 115.2 Kbaud,

which is just too much for the CoCo-3
bit banger serial port. I put the link
software in an unused CoCo cartridge
and made a serial cable, making a very
tidy package compared to the usual CoCo
setup.

NOTE: Since the CoCo serial port does
not use standard RS232 connector you
must make an adapter if you use a PC
serial cable.

The main limitation is that 2 stop bits
are needed, slowing transfer to a little
over 5,200 bytes/second. By wiring the
CoCo serial data input and interrupt pins
together 1 have the ability to do serial
port interrupt servicing. Even though
you need one character to initiate an
interrupt it represents a delay of less
than 200 microseconds. The CoCo-3
starts at low speed when power is ap-
plied, so the cartridge software relocates
itself and sets things up to full RAM and
high clock speed. The routines take about
2 Kbytes, but the benefit is that down-
loading software from the PC is very
fast.

I like machine language programming
on th CoCO. The 6809 CPU is easy to
use and the computer has no cycle steal-
ing. What you sece is what you get. |
wrote a small monitor that fits up against
the /O routines at the end of memory
and modified the Motorola freeware PC
to 6809 cross compiler to turn out a true
binary file.

There is still a lot of room for
improvments, but I achieved my goal,
which was to prove to myself that there
is no real barrier to using an obsolete
computer like the CoCo with the more
modern PC. With a fast data link it is
almost possible to forget that you are
using another computer with the PC
acting as an intelligent terminal. The
trick is in eliminating the pshychological
barrier presented by long download
times.

Yours: Frank Wilson, Tomales, CA.
Your serial interface is an excellent ex-
ample of what many of us here at TCJ

have been saying about PC'’s and Older
systems. You showed how learning as-

The Computer Journal / #69

sembly and using it on an older system
really isn’t very hard to do. You also
provided a good use for PC’s, mainly as
file servers, a good compromise of prod-
ucts.

I am not as sharp on CoCo’s as I would
like to be, but I got the impression they
use a standard serial port device and
weren’t bit banging 1/O lines, am I
wrong? Maybe you could consider a
Juller article with your assembly code
Jor the CoCo and what are you running
on the PC? I know you must be using
something of your own, since most stan-
dard PC based serial programs limit
speeds on the slower XT to 9600 MAX
(althought they can do higher as you
said) Thanks for the food for thought
and good luck with your next assembly
project. Bill.

Hello Bill,

I look forward to receiving 7CJ to see if
there are any new 8051 articles. While
not the most powerful controller around,
its ease of use rate high with me and I've
been tinkering around with it. One of
the big hassles is EPROM programing.
My code is never right the first or second
times anyway and it kept me from
begining many rpojects. I put together
the accompanying circuit to bypass this
annoying effort.

1 used 0.1" perfboard and soldered wire-
wrap wire (it goes faster than you think).
It is mounted and wired to an existing
card in the PC. The cable is 3 ft. (24

it to D800:00 (M 0100 xxxx D800:00
where xxxx is the prog length) and push
the SBC reset button. A snap !! the E
command lets you change bytes instantly.
Other Debug commands, like the Func-
tion keys, save you keystrokes, and per-
mit you to save changed programs to
disk. You have to Move the program
back to the Debug load location in order
to save it.

I look forward to playing with the in-
struction set without it being a BIG deal,
and have many projects in mind. I really
believe others would enjoy this also.

By the way, did I miss Tim’s “data ac-
quisition system” as mentioned in #47?
Could you tell me where to find it?

Have fun, Ken Willoughby, Larkspur,
CA.

Thanks for the circuit and project, Ken.
Well I can also state how great it is not
to burn EPROMSs. 1 built one for my S-
100 system based on a Microcomputer
Journal article some years back. You
can do the same things using CP/M as
with DOS and I am sure with any other
of the small systems. I even have an
EPROM burner that has the option to
act as an EPROM emulator. Sure makes
trying out little ideas a snap!

As to finding Tim'’s article, I think it got
lost in my taking over and Tim getting

CABLE MERDER

tons of work dumped on him. Tim
promissed to start suppling articles just
as soon as his new house gets done be-
ing built (think he is the contractor on
this project). If his house is going as
well as some friends did, we might see
an article this Christmas (building your
own home never seems to end). I have
been trying to get others to cover the
8051 and 6805 field, but all too busy to
do any writing.

So thanks again and what is your 8051
project? Bill.

Dear Bill,

Several items to cover in this letter. First,
and most important!, here’s my renewal.

Next, I noticed your request(s) for stuff
for the Microlog CPM card. There were
at least two models made, which I will
call I and II. The I card has only 64K of
ram on it. The II card has room for 384K
and a battery backed clock/calendar. I
have the manuals for both, and software
for the II. The II software has all sepa-
rate programs/drivers for the extra fea-
tures that the I card lacks (clock, PC
ramdisk, etc.), so I would guess that the
actual CPM part should work on both.
Whichever model you have, I'd be glad
to copy what I have for you. HOWEVER,
you may not want to waste your time. I
use Z80MU, a shareware type of emula-
tor, occasionally. I also have ZPEM, an

_ - alie— HOST PC INTERFACE
conductors) of the grey flat stuff (an old
hard drive cable). On the 8051 Single i i a2 ”§
Board Controller end of the cable, I sol- a2 a8
dered the wires to the top of a 28 pin F a8 5
socket. It plugs in place of the EPROM.

I brought the 5 volts through the cable so :

I don’t need a power supply for the SBC. Ly
Aresctbuttonand a 5 volt (470ufd/16V) §h Y !
line filter Cap were added too. The IC’s &iz é s; g E:kgggg’ " —
are 74LS off those junk boards. If you s [:t =
need less than 256 bytes of RAM- fd{iftm,_ -

EPROM, you can eliminate all the A8,
A9 and Al0 pins on the RAM (I'm : 7
using a 6116 RAM) to + or gnd (or a A
switch and use different blocks of RAM).

Ry

-
<<%
N B
~ DDDDDDDD

J
ik
;

SBC /PSEN

To use the RAM-EPROM run DEBUG,
Load a program, like FLASH.BIN, Move

The Computer Journal / #69

emulator (which specifically emulates
the Kaypro, Heath H89, and the
Osborne). ZPEM came with MEDIA
MASTER, a poor imitation of Uniform.
It (Media Master) barely gets the job
done — I wish I'd bought Uniform in-
stead.] haven’t tried ZPEM, but authors
are extremely impressed with it. There
" are others that look promising. One,
_ ZSIM, actually loads (boots) off of real
CPM disk if you give it one.

To get back to the Baby Blue card. In the
~ docs of one of my emulators there is a

scathing criticism of “ some systems

actual require that you bind a header to
the CPM programs before you can run
them...”. They are referring to the
Microlog card. In order to run a pro-
gram you must “bind” a header to it.
Actually the header is a shell that handles
the emulation. It turns your CPM COM
file into an EXE file. As soon as the
program is finished, you’re back in
MSDOS — you never sce CPM! Strictly
speaking, it’s more of a converter than
an emulator. When I read that in the
manual, I just put it back on the shelf
(got it at the microscopic local ham fest).
Like I said, you’re welcome to whatever.
But Z80MU is quite good. It even has
REZ-like disasm built in (same com-
mands as Ward C’s Resource). If you

_run it on &, say 33 Mhz AT, you get
respectable performance. My 12 Mhz At
gives a Z80 speed of 1.8 Mhz.

A possibly viable alternative is for some-
one to write/adapt a real time CPM BIOS
for the card. It doesn’t look hard, since
it uses dual ported RAM for communi-
cations between the PC and the Z80.
Considering the very heavily documented
CBIOS’s such as the Xerox 820 I & II,
it should actually be quite easy for some
whiz out there. THEN up the speed of
the Z80 chip, and you’d have a real
screamer.

Next item. Some years ago, I hooked up
a Western Digital 1002-05 up to a Com-
modore VIC-20, thena C64, then a C128.
I wrote a low level formatter in basic and
formatted a 10 meg hard drive. The in-
terface is very simple, one chip, since
the 1002 series hard disk controllers are
meant to be hooked directly to a bus
(they use tri-states). All I did was use a

few inches of ribbon cable, an old game
catridge for the card edge (game car-
tridge still works), and a single inverter
chip. Seeing as how 1) my Kaypro 10
uses the same controller (1002-HDO), 2)
since subscribing to Genie I've noticed a
resurgence of interest in CP/M on the
C128, I've in mind writing an article on
the above (C64/C128-1002-05). What
do you think? I"d been holding off writ-
ing you but the article on the 6526 in the
latest issue kind of broke the ice.

I've been using a C64 CPM catridge for
years, and with a very small mod to the
cartridge and a minor mod to the soft-
ware I'll describe below, people with the
CPM catridge canbe up an running with
up to four hard drives of any size. It
sounds weird to front end a C64, but the
CPM catridge runs a 1 Mhz Z80, just as
fast as many older CPM systems still in
use now. (Apple Z80 cards are still in
use.)

Some years back I purchased a kit from
Emerald Microware, called the Winches-
ter Connection (Wincon). 1 don’t know
if they still sell it (I’'1l check). The kit
allows you to hook up a hard drive to
almost any CPM system (CPM 2.XX
only). It works quite well and I’ve sold
several of my friends on it in the past
(naturally they made me do the installa-
tion). But I've never seen an article on
it. There was a review on it, then an
article on a home brew S-100 look alike
(no drive though...) in Micro Cornuco-
pia, but never an article on how to in-
stall the Emerald Microware kit. This
kit is a real life saver to old CPM sys-
tems! If you’re interested I'd like to write
one, because even if it isn’t made any
more, the kit includes a schematic, and
since I bought both bare and stuffed
boards — quite a simple interface —
something might be worked out on a
source (vis a vis the copyright thing).
Also it looks possible to load the modi-
fied Emerald Microware driver as CPM
Plus (3.XX) RSX. I saw a piece of soft-
ware on Genie to do just that — load a
CPM 2.XX program as a CPM Plus
Resident System Extension, thereby al-
lowing users of CPM Plus (such as the
C128) to take advantage of this jewel. A
special note though, users of anything
other than a Z80 will need a modified

driver (re 8080, 64180, 8085, etc.) I've
done some of the work already, having
rezzed the Wincon low level format util-

1ty.

Some other possible — shorter — sub-
jects are: using the spare parallel port on
the Xerox 820-II, using the SASI host
adapter on the same, for other than SASI.
By the way, the Xerox 16/8 (an up-
graded 820-II) also uses the 1002 series
controller, as does the Panasonic Senior
Partner and the Seiko 8650 multiuser
computer.

Thanks for putting out my favorite maga-
zine (since Micro Cornucopia) — thanks
for all the hard work.

Douglas Ross.

I have had several conversations with
Chuck Stafford on this very topic. He
has been looking for ways to replace
Jailed Kaypro interface cards. Our se-
ries on IDE driveswas also to get people
to consider repairs using them instead
of the harder to find 1002 cards. I guess
what | want to know (and our readers
too) is how did the kit work? What sofl-
ware changes were needed? But please
check on their availabiltiy and rights to
redo their product if they aren’t willing.

Your suggestion is just what I had in
mind for changing the Baby Blue soft-
ware. I saw the header stuff and said
what a waste. Your right too about emu-
lators, and I am sure by now you have
tried MYZ80 which works very well. Jay
Sage is planning on writing a review of
280 emulators when he can get the time
Jree to do so, but it appears your expe-
riences might be nice to see in writing as
well.

Any case Douglas, thanks for the com-
ments, and how about those articles now
that you got my interest (and attention)?
Bill Kibler.

From: K.OWEN2
To: B.XKIBLER
Sub: The possible article...

A friend at work brought me a com-

%uter, a Chameleon by Seequa of An-
ontinued on page 4

The Computer Journal / #69

Small System Support
By Ronald W. Anderson

I thought I would start this time with some honest to goodness
6809 topics. First let me give you the name and address of a
staunch 6800 and 6809 user that I have been trying to help with
an old 6809 system that refused to work.

John Fiorino
518 - 85th Street
Brooklyn, NY 11209

John tells me that he wrote to all of the advertisers from old
copies of ‘68’ Micro Journal, and received only a few replies,
mostly saying the companies don’t support FLEX anymore.
John would be interested in corresponding with anyone who
has similar systems and wants to discuss them.

John found and repaired a problem in his serial port board, but
the system wouldn’t run, though the serial board runs in
another system now. He sent me his MPO9A processor board
several days ago. I spent an hour after work (where I have a
6809 system) trying to find a problem. After noting that there
were not any chip select pulses getting to the Monitor ROM,
1 found two or three feed-throughs (vias in the parlance of PC
board manufacturers) that didn’t conduct. I soldered wires
through them and filled all the others with solder making sure
it flowed on both sides of the board. Still no operation, though
all the address and data lines scemed active and there were now
chip selects getting to the ROM with the monitor program.

Still no monitor prompt on the terminal. I spent a lunch hour
swapping chips from a working identical board. When I fin-
ished swapping every chip between the two boards (one at a
time with a test of the working board each time) the working
board still worked with all the chips from the non-working one
and the non-working one still did not work with all the chips
from the working one. I ran out of time but brought the board
home for a good visual inspection to look for foil breaks and
bridges. Continuity testing has not found any more open con-
nections, but then all it takes is one! A little while later I
decided to get out an old toothbrush and the isopropyl alcohol
(92% Isopropyl rubbing alcohol from the local drugstore) and
clean the rosin off of the board (the solder flux). I found a
solder bridge between two pads. Unfortunately the board still
didn’t work. Later I noticed that the molex connectors had
been damaged a bit. The contacts didn’t spring enough to close
the openings in the connectors, and I thought perhaps they
didn’t make good enough contact with the molex pins on the

The Computer Journal / #69

motherboard. I used up a roll of Solder Wick carefully remov-
ing the connectors and replacing them with some unused ones
that I had. Still “nada”. Ay caramba! Porque no trabaja?

Of course in the process of testing the boards I turned my
system on and off dozens of times and then discovered that I
had blown my system disk that was left in a drive with the door
closed. I wonder frequently why I am so dumb! I didn’t think

" of it because I wasn’t trying to get farther than the SBUG-E

monitor prompt. No matter. I restored it to working order from
a backup. The disk needed to be cleaned up anyway. I sure wish
I could find the bad connection though. By the way, though the
PC family won’t trash a disk left in a drive if you turn the power
off and back on again, that procedure is a definite no-no with
the old SWTPc systems. Somehow, on power up, the drive can
write a byte or two in the middle of the directory or system
information sector and the disk is basically scrap until it is
reformatted.

Assembler - 6809

I've been putting this off for months, but here I am and the
subject this time is going to be assembler programming on the
6809 running the FLEX or SK*DOS operating system. Early
versions of SK*DOS for the 6809 were called STAR DOS and
you might run across an old disk or manual that references it
that way. Peter Stark had to change the name because someone
else had used it previously. Obviously the name came from
STARK, so the duplication was perfectly innocent.

Flex was supplied with a user manual and an “Advanced
Programmer’s Guide”. It is the latter that will concern us here
since writing assembler programs requires interfacing to the
operating system unless you want to write your own code to
deal dirsctly with a serial or parallel interface. In the present
case, after thinking long and hard about how to go about
presenting the whole instruction set of the 6809 and all the
addressing modes, I decided that would not be the best way to
go. Instead, I am going to start writing some simple programs -
that do something useful.

As we move along, we’ll look at the way you interface with
FLEX and at how various addressing modes work, but this way
we can learn a little at a time and it won’t all be boring theory
for 8 months before we get around to doing something useful.

Besides, I think from my own experience, I learned more from

looking at assembler code written by someone else and first
trying to understand it, second making small modifications to
see if I could make them work, and finally getting brave
enough to try writing a program for myself from scratch.

As I write this, I am using a new old toy. I have been doing
some consulting for a customer that I have been associated with
for so long, that I think of him more as a friend than as a
customer. In late April, bill was in Detroit for a conference, and
I reminded him that Ann Arbor is only a 45 minute ride from
Detroit, so he came for a visit and we had a nice evening out
for dinner. At any rate, Bill has had me working on getting his
old 6809 programs and a very large set of data files (over 100
Megabytes) moved over from old 6809 8" floppies to his PC on
3.5" floppies, doing some translating on.the way.

Since that project is about done, Bill has some 6809 hardware
that he is winding down and won’t need anymore. He promised
to send me one of his old 6809 systems for, as he put it, “my
museum”. He has done that, and I added a pair of 5" drives and
connected my trusty old Radio Shack TRS-80 Data Terminal
(that is exactly what the label says). This terminal was bought
ataR. 8. clearance sale for $50, and it has the best and sharpest
green monitor I have ever seen on a serial terminal. It is
running 9600 baud (won’t quite run reliably at 19,200).

With this neat and reliable old computer setup, I am all set to
do the series on assembler programming. I have the equipment
at work to transfer disk files to my PC so I can get them into
form for the column. The 6809 disk is readable on the Periph-
eral Technology PT68K-4 system at work. That has a utility
called MSWRITE to write it to a disk formatted on the PC, and
then I can read it in as a text file and include it in my column.
Before I transfer it to the PC disk, I run it through a filter
program that adds a linefeed after each CR, since FLEX
terminates a line with a CR only and MS-DOS likes CR/LF.

First thing I did was to try to set up a system disk and add a
few little utilities. I don’t like to go away for supper or a cup
of coffee or whatever and leave the terminal’s screen full of
clutter, so I tried the CLS (CLear Screen) utility on my system
disk. It was written for a different terminal, a Wyse that uses
ANSI terminal commands, so of course CLS printed garbage
on my screen and didn’t clear it. This old TRS uses a simple
AZ to clear the screen. That is, the ASCII character decimal 26
or Hexadecimal 1A. Well, why not write a new CLS utility for
the system since I am going to use it this way for the foreseeable
future?

FLEX has a couple dozen “system calls” that are very uscful
particularly when writing system utility programs. If you have
one of those Advanced Programmer’s guides, you can follow
along. If not, just keep this series of columns available, since
we’ll describe every system call that is used. To clear the screen
on my terminal, the computer has to respond to my CLS
command by loading and running a little program that outputs
a Z to my terminal and then returning to FLEX.

We will need two FLEX calls. The first is called PUTCHR, and
it simply outputs the contents of the A accumulator of the
processor to the serial port to which the terminal is connected.
PUTCHR is “called” by using an absolute JSR (Jump to
SubRoutine) instruction to the subroutine in FLEX after load-
ing the proper code into the A accumulator. We return to FLEX
by doing an absolute JMP to the FLEX Warm start address
called WARMS by FLEX. I use the word “absolute” here
because there are also “relative” jump instructions on the 6809.
Those are BRA for BRAnch, LBRA for Long BRAnch, BSR
for Branch to SubRoutine, and LBSR for Long Branch to
SubRoutine. If you are running SK*DOS you will find that
these routines have different but very similar names.

If you have the book you will see that WARMS is defined as
$CDO03. In 6809 assembler, a dollar sign $ is the prefix for
hexadecimal code. The FLEX calls all are up in this area of
memory which is of course occupied by FLEX when it is
loaded. The address for PUTCHR is $CD18.

First a comment line:
* Program to clear the screen of a TRS DT-1 terminal (*Z)

Comment lines start with a star (asterisk) in the very left most
column of the screen. Everything after the star and on the same
line is a comment and is ignored by the assembler. Now we
define the FLEX call addresses:

WARMS EQU $CD03
PUTCHR EQU $CD18

FLEX comes complete with a file called FLEXEQU.LIB which
contains the equates for all of the system calls, but the library
file is kind of big and we only need these two, so let’s do our
own. In this assembler all “labels” or names start in the first
column of the screen. We are defining names to be replaced by
hexadecimal values with these two lines. The EQU is an
assembler “directive” that tells the assembler to assign the
hexadecimal value to the name or Label preceding it. State-
ments that equate a numeric value to a label are frequently
called “equates”. Having defined these, when the assembler
sees the word WARMS, (meaningful to a programmer) it will
substitute the value $CD03 (meaningful to the computer).

Next we need an origin statement. This tells the assembler
where to put the program in memory. All Flex utilities that are
small enough load into a “Utility Command area” that is
several hundred bytes long, and starts at $C100, extending to
(I’'m pretty sure) $C7FF.

ORG $C100

Note specifically that ORG is not a label or a name, but is an
assembler directive. It starts anywhere AFTER the first col-
umn. ORG must be followed by an address, usually done in
hexadecimal though the assembler could handle the decimal
value just as well.

The Computer Journal / #69

Now we start the code. A program to be run under FLEX needs
a label at the point where the code is to start execution when
it is loaded by the FLEX binary loader.

START LDA #$1A THIS TEXT IS A COMMENT
START is a label. It again must start in the first column. LDA
is the operation code meaning LoaD accumulator A. What
follows the LDA opcode is the operand. In this case the #
means “immediate”. The $1A is the ASCII code for ~Z. The
immediate sign means essentially “the code immediately fol-
lowing this symbol”. An opcode may or may not require an
operand. For example COMA is the instruction to complement
the contents of the A accumulator. In other words “invert” the
contents. Change the 1’s to zeros and the zeros to 1's. It doesn’t
need an operand. LDA, requires an operand. I would read this
line as: Load A immediate hex 1A.

JSR PUTCHR

Again note that JSR is an opcode and it is not in the first
column. PUTCHR is the routine that puts the contents of the
accumulator out to the terminal serial port. A subroutine is a
section of code that has the operator RTS at the end, meaning
ReTurn from Subroutine. When that code is finished, the RTS
causes execution to begin at the line after the one containing
the JSR. We’ve cleared the screen. Now we have to return to
FLEX so that familiar +++ prompt appears and we are ready
to execute another command or program.

JMP WARMS

After we output the clear command to the terminal we return
to flex with this unconditional jump. You might think we
should be done, but not quite. The Assembler requires us to tell
it where to start execution of our program.

END START

Again note that JMP and END are not in the first column of
the line. END START is an assembler directive that causes the
program’s transfer address to be set to the label START. Seems
sort of dumb for this small program, but some programs don’t
start execution at the first line of the code, and many have a
large number of “labels”. By the way, the label START here
can be whatever. Some programmers like BEGIN. As long as
the label that follows the END directive is the label at which
you want the program to start execution, everything is fine.

Here is the whole program:
* Program to clear the screen of a TRS DT-1 terminal (*Z)

WARMS EQU $CD03
PUTCHR EQU $CD18

ORG $C100

The Computer Journal / #69

START LDA #$1A
JSR PUTCHR
JMP WARMS
END START

THIS TEXT IS A COMMENT

Blank lines are permitted in a program. If there is any text on
the line that is a comment the star must appear in the first
column. Therc are some rules that apply to program listings.
Spaces separate “fields” in the program source code. The first
field starting in the first column is the label field. Next is the
operator ficld, then the operand ficld. and finally the comment
field. Comments after the operand are valid up to the end of the
line.

It is permissible to add more spaces between ficlds. Some

assembler programmers format their source code with extra
spaces so it would look something like this:

* Program to clear the screen of a TRS DT-1 terminal (*Z)

WARMS EQU $CDO03
PUTCHR EQU $CDI8

ORG $C100
START LDA #$1A THIS TEXT IS A COMMENT
JSR PUTCHR
JMP WARMS AND ANOTHER
END START

While this format is a lot easier to read, it takes up more space
as a text file, and the assembler will format it’s output listing
if you want to read that. I’ve run the assembler on this code and
saved the output listing to a file. I've created a label for the CLS
instruction also. Here is the result.

* program to clear screen for the Tandy DT-100

001A CLS EQU $1A
CD18 PUTCHR EQU $CDI18
CDO03 WARMS EQU $CDO03
C100 ORG $C100 FLEX UTILITY AREA
C100 861A START LDA #CLS
C102 BD CD18 JSR PUTCHR
C105 7E CDO03 JMP WARMS
END START

0 ERROR(S) DETECTED

The interesting thing about this output, which can go to the
screen or to a printer, is first that it is formatted, and that it lists
the hexadecimal machine code instructions that it has gener-
ated. The program, first of all, is just eight bytes long. That, of
course is because it is little more than a couple of system calls.
The first column of this listing shows the memory address at
the start of each line of code. We set ORG to be $C100 so the

program starts at that address. The code for LDA # is $86. We
defined CLS as $1A and that is what appears as the operand.
BD is the JSR code and the CD18 is the PUTCHR. 7E is the
JMP absolute code and it is followed by the address to jump to,
$CDO03. The assembler listing doesn’t show how the output file
looks, but how the program will load into memory. The file
contains some housekeeping bytes, the first memory load ad-
_ dress, the number of bytes, and the transfer address at the end.

. As“homework” if you have the Advanced Programmer’s guide
you might look through the system calls such as GETCHR and
PSTRNG and see what they do. Don’t bother getting into the
file handling routines, since we won’t get that far for a while

_yet. We'll practice for a while writing programs to do things
in memory and report them to the terminal. After that becomes
fairly routine we’ll write one that opens a disk file. That is
scary at first because it is possible to clobber your system disk
and the like. We'll talk about precautions to usc before testing
a first program that handles disk files.

The assembler will assemble this program when given the

command: ASMB CLS. Sometimes we want to modify the

action of the assembler. To eliminate the listing out to the
terminal, eliminate a symbol table output and erase an old
output file if it exists, the command would be ASMB CLS
+LSY. If you make an error, the assembler will flag it for you.
The largest single error that I make is to forget to indent a line
that starts with an opcode and not a label.

By the way, if your terminal takes multiple “characters” to
clear it, you can repeat the LDA # and the PUTCHR call as
many times as you like. For example maybe your terminal
needs the sequence ESC * to clear the screen. You can define
. ESC as $1B and use LDA ESC. You can use a character and
the assembler will use the proper ASCII code, by using an
apostrophe before the character. LDA #°* will get you the star
or asterisk ASCII code in accumulator A. The changed part of
the program would look like this:
ESC EQU $IB
START LDA #ESC
JSR PUTCHR
LDA #*
JSR PUTCHR
JMP WARMS
END START

The program has gotten “big”. We’ve gone from eight bytes to
twelve if I count correctly. FLEX will use a whole 256 byte
sector for this, so even if you have to send your terminal a
dozen characters, it won’t occupy any more disk space.

Let’s talk a little about vocabulary. The code shown just above
the last paragraph is called a “Source Listing”. That is, it is the
file that the programmer gencrates in words. When it is as-
sembled the result is what we call an “Object file” or “execut-
able file”.

10

I am reminded that I once had a difference of opinion with a
reader of one of my early columns. I had said something about
liking a high level language for large programs. This reader
disagreed and thought I ought to use assembler for everything.
Further discussion showed that he thought 100 bytes was a
large program! I was thinking of anything over a couple of K
of object code. I deal regularly with 32K 6809 object files
programmed in PL/9. I would not want to have to maintain
these in Assembler, though at this point, I could. Assembler
has it’s place in the scheme of things, however where speed is
an absolute necessity;or where you wam something small 1o do
a simple job. ' T ' '

Before I go on to other topics, let’s summarize what we’ve
covered in this simple program. I haven’t used the term ad-
dressing modes, but we’ve used two.

LDA #$1A Immediate addressing — $1A is placed in ACCA
(ACCA is a standard abbreviation for accumulator A)
Immediate addressing is used for constants hard coded

into the program.

JMP $CD03 Extended addressing. The operand is a 16 bit
value, the address to which to jump.

LDA $1234 Extended addressing — the contents of address
$1234 are placed in ACCA. This mode is used to access
variables. You would probably use a label that was
“equated” to $1234.

LABELS are assigned values either by means of “equates”
or by their position in the program. In 6809 Assembler

a label can represent a 16 bit “word” value such as an
address, or it can represent an 8 bit “byte” value as
assigned by an equate statement.

CLS EQU $1A — assigns the value $1A to the label CLS

START LDA #CLS — the START label immediately follows
the ORG $C100 directive. Labels in the program label

field have the value of the program counter at that point.
Since we set the program counter to $C100 with the ORG
directive, START has that value (sce output listing).

Labels can be assigned values by one other means that we
haven’t used yet, the RMB (reserve memory byte(s))
assembler directive.

In case you are wondering, the opcode for LDA # is different
from the opcode for LDA extended. The assembler can tell
from the operand which is meant, and it generates the appro-
priate machine code.

Miscellaneous
I’ve just been writing some drivers for an LCD display onto
which we are going to put numbers and text in graphic mode.

My first shot was on a PC in C, and it is acceptably fast. I am
presently working on the 6809 version in PL/9. My first try at

The Computer Journal / #69

a translation from C to PL/9 was a bit slow in execution. It took
about four seconds to fill the screen with text. After some
optimization of the PL/9 code it took just under 1 second. I may
well have to write some of the procedures as “asmprocs” in PL/
9 to try to increase the screen writing speed. PL/9 nicely allows
embedded assembler code and we have written a utility called
ASMGEN that converts an assembler output listing (like the
one above with the opcodes) to the format required by PL/9 for
an assembler procedure.

One thing that becomes obvious is that I am going to run out
of program space in the 6809 system. One thought I had today
was to try to compress the bitmap character images in my font
table. Of course then I am slowing the system down as a
penalty for saving memory. I wrote a quick program to read a
bitmap for an 8 times normal size number 5. The bitmap is 280
bytes. I thought I would count strings of 0’s and 1’s starting
with zeros and alternating, outputting the count to an output
file. As long as there are fewer reversals than bytes of bitmap,
I would come out ahead. The 280 byte bitmap for the 5 was
decreased to 137 bytes, just a bit better than a 50% compres-
sion. The compression procedure is simple, and the inverse
expansion procedure would be about the same. I would expand
the bitmap and then write it to the display.

Another thought was an algorithm to magnify a smaller font
bitmap by a factor of 2, making each pixel in the original four
in the larger map and then apply an algorithm of some sort to
smooth the outline by turning off pixels on outside corners etc.
I decided that the smoothing procedures would probably take
up more space than I would save, and again would severely
slow down the process. A few tests with bitmaps filled in on
square ruled paper convinced me that the rules would be
complex and that there would have to be a number of excep-

tions in order to come up with anything nearly as good as a well
designed character at the higher resolution.

I finally hit on the simple scheme. The LCD controller has
some extra memory. I can store my bitmaps in an EPROM on
the controller and read them from there when I write the
screen. All my maps occupy slightly more than 8K, and I have
32K available on the controller board. it will be a little slower
to read the data but not much. This immediately doubles my
available program memory. If I had to, I could put some of the
driver routines in the controller memory t0o. At any rate, I had
fun contemplating and testing compression ideas and character
outline smoothing algorithms.

The Numbers Game

Since I have a few K of text space left here, I thought I'd
mention something that gripes me a bit. Traditionally, 1K is 2
to the 10th power or 1024 in the field of computing. 1 Meg is

~ 1K times 1K or 1,048,576. RAM and ROM memory is always

specified this way. 1 Megabyte of RAM is 1,048,576 bytes. I
would therefore expect a 100 Megabyte drive to hold
104,857,600 bytes. I find that all the hard drive manufacturers
would call this 105 Megabytes, or at least 104. My new 420
Megabyte drive actually is a 406 Megabyte drive in terms of
1,048,576 byte Megabytes. Of course when you format this
drive it reports something on the order of 420,000,000 bytes
free before you copy any files onto it. The 170 megabyte drive
that I use has an actual capacity of 162 megabytes. I resent the
almost 5% inflation of the actual drive capacity calculated the
way computer folks have always calculated K and Meg. I
would not be unhappy if the drive manufacturers would switch
terms and call their 170 megabyte drive a “170 million byte
drive”, but it ought to be 162 megabytes.

MCB809
From Motorola Microcontroller Manual Vol. I1.
HGURE 4 —~ PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

8 °
X ~ index Ragiter
Y - Index Negister
U —~ User Swaok Pointec
$§ ~ Herdwaere Stack Pomer

[ETr v sz v]c] cc - condron Code Rageter

PROGRAMMING MODEL
As shown in Figure 4, the MCEE08 adds three registers to
the set available in the MCBBO00. The added registers include
a direct page regisier, the user stack pointer, and a second
index regrster.

ACCUMULATORS (A, B, D)
The A and B registers are general purpose accumuiators
which are used for ari and

of dats.
Certain # the A and B reg o

Oormlmls-bnmmumov This is reterred 10 as the D
register, and is Tormed with the A register as the most signifi-
cant byte.

DIRECT PAGE REGISTER (DP}

Tmmwmmo'mummxommna
the direct addressing mode. Thoeonmtohmml:‘lp;
molmnghuMwwuuiAB-MSl during direc
This sliows the direct
mode 10 be used at any place in memory, under program
control. To ensure MEBOD compatibility, all bits of this
register are cleared during Processor reset.

The Computer Journal / #69

INDEX REGISTERS (X, Y)
The index registers are used in indexed mode of address-
ing. The 16-bit address in this register takes parnt in the
of effective This address may be used
10 point to date dwectly or may be modified by an optional
constam or register ofiset. During some indexed modes, the
contents of the index register are incremnentad or decrement-
ed 1o point to the next item of tabular type data. Al four
pointer registers (X, Y, U, S) may be used a3 index ragisters.

STACK POINTER (U,S)
The hardware stack pointer (S) is used aulomnurv bv
the during calis and
stack pointers of the MCEB0B point 1o the top of the sud: in
contrast to the MCBB00 stack pointer, which pointed to the
next fres iocation on the stack. The user stack pointer (U} is
i by the Tins allows
arguments 10 be passed to and from subroutines with ssse.
Both stack pointers have the same indexed mode addressing
capabilities as the X and Y registers, but aiso support Push
ang Pull instructions. This alows the MCE809 10 be used effi-
ciently as 8 stack processor, greatly enhancing its mm to
support higher level languages and modular

PROGRAM COUNTER

The program counter is used by the processor to point 10
the address of the next instruction to be executed by the pro-
cessor. Relative addressing is provided sliowing the program
counter 10 be used like an index register in some situations.
CONDITION CODE REGISTER

The condition code register defines the state of the pro-
cessor at any given time. See Figure 5

FIGURE 5 — CONDITION CODE REGISTER FORMAT

ccar 7 6 10

CARRY FLAG (C)

Bit 0 is the carry flag, and is ususity the carry from the
binary ALU. C is aiso used tO represent a ‘borrow’ from
subtract-kke instructions {CMP, NEG, SUB, S8C) and is the
complament of the carry from the binery ALU.

OVERFLOW FLAG (V)
aumwmm mummumbvanm

py A
m-any'mthoMSBmm-ALumnumwmy
from the MSB-1.

ZERO FLAG (2}
Bit 2 is the zero flag, and is set to & one if the result of the

NEGATIVE FLAG (N}

8it 3 is the negative fiag, which contains exactly the veiue
of the MSB of the result of the preceding operation. Thus, &
NOgative twos-Complement result will lseve N set to a one.

RG MASK {1}

Bit 4 is the [T mask bit. The processor wik not i
in mmlﬂbmnmm‘nmto-msa:.
FIRQ, G, RESET, and SW1 oM set | t0 a one. SWI2 snd
SWI3 do not affect).

HALF CARRY (H]

Bit 5 is the helf-carry bit, and is used to indicate & carry
from bit 3 in the ALU as & result ot an B-bit addition only
(ADC or ADD). This bit is used by the DAA instruction to
m-ncommmw The stewe of
this fisg is ined in all subf

FIRG MASK (F)

Bit 6 is the FTRO mask bit. mewnlnot
recognize inerrupts from the FIRG line if this bit is & one.
KM, FING, SWi. and RESEY it et F 10 a one. THD, SW12,
snd SW do not atiect F.

I I L Cony
Overtiow ENTIRE FLAG (E)
froeN 8117 is the entire flag, and when 36t 10 & One indicates that
-3,““ the ine siate (sl the was stcked,
L et Catry 23 0pposed 10 the subset state (PC and CC). Tha E bit of the
FiRa stacked CC is used on a retum from interrupt (RT) to deter-
Entrs Flag mine the extent of the unstacking. Thereiors, the current €

left in the condition code register reprasants past action.

11

PC/XT Corner

by Frank Sergeant

Oh, it was a joy using Forth to fool with a stepper motor. The
_ project came together quickly as I tested a little piece at a time
until I figured out how it worked.

Mental Model of s Stepper Motor

1 start with a fairly simple mental model of a stepper motor. As
I see it, it is basically a collection of electromagnets that pull
the motor shaft to a slightly new position. The idea is to
energize only one or a few of the electromagnets at a time, and
in the right sequence, rather like a donkey chasing a carrot and
being beaten with a whip, to move it around and around. The
motor has just two electromagnets — really two sets, where all
in a given set are energized the same way at the same time.
But, to keep the explanation simpler, I may talk as if there were
just the two electromagnets, rather than the two sets. With
each electromagnet, you can either not energize it, or energize
it so the North pole is on the “left” and the South pole is on the
“right”, or energize it so the South pole is on the “left” and the
North pole is on the “right.” To energize it, you pass current
through it in one direction or in the other direction.

How Many Wires

Stepper motors come in several flavors. Really, you effectively
have only two coils of wire in the motor, one for each (set of)
electromagnet(s). Thus, you can get by with 4 wires. Each coil
has two ends and there are two coils. With this arrangement

you need external circuitry to allow you to switch the flow of

current through a given coil from one direction to the other
direction. An “H-bridge” is commonly used for this.

Much more convenient is to have a motor with either 6 or 8
wires. Although we still really have only the two (sets of)
electromagnets, we now have two coil for each electromagnet.
This does not give us 4 sets of electromagnets. In a given set,
you either use one winding or the other winding, but never both
at the same time. The whole point of this is to avoid the need
for the H-bridge. With four windings, each with two ends, you
have 8 wires. The six-winding motor still has 8 wires inter-
nally, but two ends of each electromagnet windings are joined
together for you. So, either 6 or 8-wire motors are equally easy
touse. You could also have a 5-wire motor, where either the
“ground” or the “positive” end of all four windings are con-
nected together inside the motor. The motor I used has 8 wires.
I connected one end of each winding together to form the

12

common positive end, and selectively grounded one of each of
the other 4 wires to energize a particular winding.

My Motor

My motor says ASTROSYN STEPPER, AST P/N 23LM-
K005-P4, 7.0 V/PHASE, NO. T32865, Minebea Co., Ltd.,
Made in Thailand. I don’t remember where I got it — possibly
from Tanner Electronics. I got several surplus, probably sev-
eral years ago for about $5 each or so. With an ohm meter I
found out which wires belonged to the same winding. Obvi-
ously, with 8 wires there were 4 sets, one for each of the 4
windings. However, I could not figure out how to tell which
pairs of windings were for the same set of electromagnets. My
plan was to ground one end of each of the 4 windings and
connect the other end of each winding, one at a time, to +5
volts, or so. I used a resistor to limit the current while I was
fooling with it. My worry was that if I picked the wrong ends
of a pair of wires for one electromagnet to ground, that which-
ever of its two free ends that I connected to 5 volts, would result
in the same polarity. I still haven’t resolved this worry. Any
suggestions? Anyway, the motor was advertised as having 200
steps per revolution, and when I give it 200 steps it goes around
exactly once, so I believe I must have it connected correctly.

The Motor Connections

So, I've got 4 free ends and 4 ends connected to 5 volts. How
do I turn on one winding at a time? For experimenting you can
just touch the lucky winding to ground, but for real use you
want a rather more convenient method. I choose the DS2003
“high current/voltage Darlington driver” chip from National
Semiconductor. I think this is the same chip as the Sprague
ULN 2003. It comes in a 16-pin DIP. It has 7 Darlington
transistor pairs, which act as 7 switches, with a reverse-biased
diode across each switch. There are 7 control inputs, one for
each switch, which accept TTL or CMOS logic levels. A high
closes the switch and a low opens the switch. The reverse-
biased diode prevents the kick from the coil when the switch
is turned off from damaging the transistors. In case I don’t get
around to drawing the schematic, pins 1 through 7 are the
control inputs controlling corresponding “outputs” on pins 16
through 10. Pin 8 is ground. The “outputs” output a ground,
so to speak, when their corresponding control lines are acti-
vated. That is, if pin 1 is at a logic low, then pin 16 is not
connected to ground, but if pin 1 is at a logic high, then pin 16

The Computer Journal / #69

is connected to ground. So, the four windings receive 5 volts
on oi:e end all the time, but we select one winding at a time to
be connected to ground aid thus energize the winding. 1 used
the first 4 switches to contr:l the 4 windings. This gives me
3 switches left over, for oihier purpos.:. Hui not quite enough
for another stepper motor.

Sequence is Everything

The trick is to energize the windings in the proper order to
tease the shaft around and around. Let’s call the 4 windings
A, B, C, D. At first I thought there were 6 possible sequences

ABCDABCD...
ABDCABDC..
ACBDACBD..
ACDBACDB...
ADBCADBC..
ADCBADCB...

v e e e e

Since I didn’t know which was the correct sequence, I figured
I would try each of them and pick the best. Later, I realized
there were only 3 possible sequences with the other 3 just being
the reverse of the first 3. So, one of the three would make the
motor go in one direction. Reversing that sequence would
make the motor go in the other direction. I dids:’t care which
way we started, so I just had 3 sequences to test.

Parallel Port

I decided to let 4 of the PC’s parallel port output lines control
the 4 switches. Ordinarily the parallel port is connected to a
printer. It communicates the data byte to the printer over the
8 data lines. A scparate strobe line tells the prin.or when the
data is valid. The parallel port also has oiher handshaking
lines and ground lines. Ordinarily a “siandard printer ceh!e” is
connected to the PC’s parallel port. This has a ma.. 5B25
connector on the end that connects to the PC and a male
Centronics 36-pin connector on the end that connects to the
printer. I decided not to use that type of cable because of the
difficulty of getting a matching female 36-pin connector for the
stepper motor circuit. Instead, I used a straight-through 25-pin
male to 25-pin female “serial” cable. PC scrial ports have
either a 9-pin male or 25-pin male connector, and so take a
cable with a female end.

PC parallel ports have a 25-pin female connector, and so take
a cable with a male end. Don’t connect your cable backwards
and thus to a PC serial port! Anyway, using the serial cable,
pin 2 through 9 are the data bits 0 through 7. We’ll just use
the 1st four (pins 2, 3, 4, & 5). Pin 1 is the strobe, which we
won’t need. Pins 18 through 25 are grounds, but who knows
if ail of them go through the cable (check ycur cable). Pick one
of them for your ground. I think I picked #21. So, those 5 lines

4

The Computes J «otian - w0

are all we need. The “serial” cable ought to be fairly cheap ($3
or $4). Connect pin 2 of cable to pin 1 of the DS2003 as follows

“serial” cable pin DS2003 pin
Data line 0 2 1
Data line 1 3 2
Data line 2 4 3
Data line 3 5 4
ground 21 etc 8

then connect a 5 volt supply with the ground to DS2003 pin 8
and the 5 volt end to the common ends of the 4 stepper motor
windings, Connect DS2003 pins 16, 15, 14, & 13 to the four
loose ends of the stepper motor windings. You could put a
current-limiting resistor in series between the power supply
and the common end of the motor windings, especially if you
use a higher voltage supply. Your motor may vary, so it is safer
to measure the resistance of your motor windings and figure
out what amount of current-limiting you might want to pro-

- vide.

Software

I used Pygmy Forth version 1.4 for the following. The general
ideas should work with any Forth for the PC. Pygmy can be
downloaded at no charge from various fip sites, including
oak.oakland.edu, or from various bulletin boards, or I sell a
bonus disk for $15 (in the U.S.) which includes the latest
version plus some extras.

First you need to know how to address the PC’s parallel port.
You commonly refer to the parallel ports as LPT1, LPT2, etc.
The I/O addresses that correspond to each of these aré stored
in a BIOS data area at the 8 bytes starting at address $0040:0008.
LPT1 is commonly either $0378 or $03BC. Following is a
Forth word to print the addresses of the 4 possible parallel

ports.

: PORTS (-)
BASE @ HEX
$40 8 4 FOR 2DUP L@ U. 2 + NEXT 2DROP
BASE ! ;

BASE @ merely fetches the current value of BASE so we can
change to base 16 with HEX. Then $40 8 puts the scgment and
offset address for the start of the BIOS data area onto the stack.
The 4 FOR ... NEXT marks a loop that is done 4 times. Inside
the loop, the segment:offset pair is duplicated with 2DUP, L@
is a long fetch that reads the 16-bit value stored at the
segment:offset address. U. prints this value as an unsigned
number. 2 + increments the segment:offset address on the
stack to point to the next location. Finally, when the loop ends,
2DROP throws away the segment:offset address that we no
longer need and BASE ! restores the previously saved value of
BASE. You can type this word to find what the actual parallel

13

port addresses are in your machine. As I mentioned, LPT1will
probably be $0378 or $03BC.

Actually, you don’t need the word PORTS. It is just for

your general information. You don’t need to know what the

port address is, you just need to know where to find it. In the

following, we will define a word LPT which looks up the port
. address for you and stores it into a variable named ‘PAR.

VARIABLE ‘PAR (holds base I/O address for parallel port)

‘PAR is a variable which will hold the I/O address of the port
we decide to use.

:LPT(#-) 1- 2*8 + $40 SWAPL@ ‘PAR ! ;

LPT is a word that finds the address of the port you want to use
and puts it into the variable ‘PAR. For example, if you say 1
LPT the word LPT will look up the address for LPT1: and
store it in ‘PAR.

Next, we need a way to write a value to the parallel port to set

the lower four data lines which are connected to the DS2003
chip.

:LPT! (¢-) PAR@PC! ;

LPT! does the trick. Given a byte value on the stack, that value
is written to the I/O port whose address is stored in the variable
‘PAR. PC! is the word that does the actual writing to the port.
The P stands for port, the C indicates the value to be written
is “character” sized (i.e. abyte), and the ! stands for “store” and
means we are writing _to_ the port, rather than trying to read

- fromit. So, if we wanted to turn on the least significant bit of
the parallel port, the bit that is connected to pin 1 of the
DS2003 chip, we could say

1LPT!

if we wanted to turn on each of the 4 bits one at a time and then
tumn all the lines off, we could say '

1LPT!
2LPT!
4 LPT!
8 LPT!
0 LPT!

We could even define a word to turn the motor off with

: MOTOR-OFF O LPT! ;

Now we are nearly ready to do some serious playing. We will
build a table holding the sequence we want to use to turn on the

motor windings in the proper order. Wait, we don’t know what
that sequence is yet! Ok, we will DEFER a word that repre-

14

sents the table we will use, once we figure out what the table
should be:

DEFER TABLE

As I mentioned, there are only 3 possible sequences. Let’s
build a separate table for each of the three:

CREATE TABLE1 1C,8C,2C,4C, (sequence)
CREATE TABLE2 1C,8C,4C,2C, (sequence)
CREATE TABLE3 1C,4C,8C,2C, (sequence)

The first table says we will write a 1, then an 8, then a 2, then
a 4 to the parallel port in that order. Then, one ata time, we
point the word TABLE to one of the three possibilities and try
it. For example,

‘ TABLE1 IS TABLE

is how we would set up the word TABLE so that it would really
execute the word TABLE1.

Then, we might want to allow a variable delay to determine
how fast we write values to the motor. We will declare a
variable ON-DELAY to hold the number of milliseconds we
want to wait between writes to the port, and we will initialize
it to 100 milliseconds.

VARIABLE ON-DELAY
100 (milliseconds) ON-DELAY !

The key word we need is one to make the stepper motor take
a single step. We will use the word STEP. Since there are 4
different values we will write to the port to energize the motor
windings, we will use the numbers 0, 1, 2, 3 as indexes into the
TABLE to represent each of the 4 values. Essentially, gi{'en an
index on the stack between 0 and 3 which represents the _last_
index used. Then we update the index to the one to use for the
current step and fetch the corresponding value from TABLE
and write it to the port. We will leave the index used this time
on the stack so the next time we take a step that information
will be available. Finally, we need to delay for a while.

There is a slight complication. We might want the motor to
turn in one direction or in the other direction. We will let the
variable DIRECTION hold the value to add to the index we last
used in order to give the proper index to use for the step we are
about to take. The word FWD sets direction to the value 1.
This scems to make since, right? If the last index used was
zero, and we add the value in DIRECTION to it, we get the
value 1, then next time when we add DIRECTION to it we get
2. This works fine until the last index is a 3 and we add
DIRECTION to it and get a 4. Utoh. What we really want to
do is make the index cycle through the numbers
0,1,2,3,0,1,2,3.0,1,2.3,... So we want to divide the number by
4 and use the remainder. We use the cheap trick of 3 AND
to accomplish this. Thus 0 3 AND gives 0, 1 3 AND gives 1,

The Computer Journal / #69

2 3 AND gives 2, 3 3 AND gives 3, and 4 3 AND gives 0,
which is just what we want!

There is one more slight complication. What if we want to
back up, to move through the table in the other direction. Well,
we might start subtracting 1 from the previous index, but
another way of doing it is to add 3. Once we do the 3 AND,
we will find the index backing up just like we want.

VARIABLE DIRECTION
: FWD (last - last’) 1 DIRECTION | ;
: BACK (last - last’) 3 DIRECTION ! ;
: STEP (last - this)
DIRECTION @ + (find the next index to use)
3 AND DUP (equivalent to 4 MOD)
TABLE + C@ LPT! (fetch value & write to port)
ON-DELAY @MS ; (kill time)

FWD

Notice how simply and pleasantly the above can be done in
Forth. Of course, we might get tired typing the word STEP
over and over, so we make a word to repeat it for us. Given a
last index number and a count, STEPS is the answer.

: STEPS (last # - this)
FOR ?SCROLL STEP NEXT ;

Saying 0 30 STEPS will take 30 steps and leave the last index
number on the stack, so we could then say 200 STEPS to move
a full revolution. Of course, we aren’t yet sure which table to

use, so trying

* TABLE1 IS TABLE 0 200 STEPS DROP
* TABLE2 IS TABLE 0 200 STEPS DROP
* TABLE3 IS TABLE 0 200 STEPS DROP

should let us find the one that works best.

We ocould add a little error detection code to the word STEP as
shown below,

: STEP (last - this)
DUP 0 4 BETWEEN NOT ABORT” BAD LAST
STEP” DIRECTION @ +
3 AND DUP ST + C@ LPT! ON-DELAY @MS ;

but it is hardly needed. The common mistake would be to
forget to put the last index on the stack before calling STEP or
STEPS. In that case, some trash on the stack would be used
instead, but the 3 AND would clip it to between 0 to 4, so not
much harm would be done.

We might find we say 20000 STEPS and decide we don’t really

want to wait that long! So, the word STEPS contains the word
?SCROLL which checks the keyboard and aborts the current

The Computer Journal / #69

word if you press the Esc key. Or, if you press any other key,
?SCROLL stops and waits until you again press any key.

Once you find the right table to use, you can throw away the
other two tables, or save them in case you get a different stepper
motor. You can change the value placed into ON-DELAY to
vary the speed of the motor. Here is an example of how to turn
the motor forward a full turn, back a half turn, forward a
quarter turn, back and eighth turn and then stop:

0 FWD 200 STEPS
BACK 100 STEPS
FWD 50 STEPS
BACK 25 STEPS
MOTOR-OFF

Let’s add one more word to set the speed of the motor

: SPEED (#-) ON-DELAY! ;

* This is great fun for demonstrating the motor. Note that we

have built a motor control language with the following com-
mands: SPEED, FWD, BACK, STEP, STEPS, MOTOR-OFF.
Hell, even someone who didn’t like Forth might enjoy using
such a pleasant and interactive stepper motor control language.

Eventually, though, you might want to encode the complex
motions into words of their own, to cut down on your typing.
The above demonstration could be put in a word named DEMO
as follows:

: DEMO (-)
0 FWD 200 STEPS
BACK 100 STEPS
FWD 50 STEPS
BACK 25 STEPS
MOTOR-OFF)

Remember, STEPS already has the word 7SCROLL built into
it, so just pressing a key will stop and restart it. Or, you could
define an endless loop (until you press Esc) to repeat the demo
faster and faster and then slower and slower, or produce certain
motions based on certain key presses or input switches, etc.

Going Forth

You may have guessed that I have plans for this stepper motor
controller circuit in the XYZ table I hope to have one day. So
far we’ve only talked about controlling a single motor. The
DS2003 chip only has 3 left over switches; not enough for
another motor, but two DS2003 chips would have 14 switches .
which would be enough for 3 motors with two switches left
over. The next question is whether we can get twelve output
lines from a single parallel port or whether we would either
need to use 2 ports or some sort of multiplexing scheme. Well,
we have 8 data lines; enough to control two motors. Then we
have 4 output handshake lines; enough for the 3rd motor. (One

15

motor for eachof X, Y, & Z requires three motors.) So, it looks
like a single parallel port will be sufficient.

Even if a stepper motor is not what you want to control, I hope
the above ideas will help you use the parallel port for whatever
you might want to control.

Left Over

I still have many things to do and to write about. I will be
delighted to hear your questions and suggestions. I received
some information from DynaArt about their iron-on methods
for making printed circuit boards. I had been disappointed in
my first attempts with this sort of thing, but with their sugges-
tions I might find it works well after all. Eventually, I hope to
pass on the suggestions and comments about my results. I also
have some of the Press-N-Peel material I want to try. I have
heard glowing reports about it, but also that it may be incon-
sistent from batch to batch. I would like to try it as well and
give you a comparison of the two. I feel that I am so clumsy
with this sort of thing, that if any of it ever works well for me
then it will work great for you.

I’'m also interested in software digital logic breadboarding,
especially for the intro to computer architecture labs I teach.
The idea being that a student might learn more of the prin-
ciples if some of the tedious mechanics of wiring up the circuits
were eliminated. I have two packages to look at as soon as I
get the time.

Prices I mentioned for old PCs in previous articles seemed way
too high as soon as they were in print. I just got a catalog from
Sun Remarketing, Inc. (1-800-821-3221) which specializes in
used Macintosh computers. They offer an IBM PC with 640K
RAM, 2 360K floppy drives, keyboard, serial port, parallel
port, and monochrome monitor for $99 (plus $45 shipping &
handling!). For $50 more they will replace one of the 360K
drives with a 10Mbyte hard drive. I've seen ‘386SX
motherboards for around $64. Some places, I think, don’t even
sell ‘386 motherboard any more because they are now out-

dated. Gee, not only can old PCs join the classic computer

ranks, but my ‘386 seems to be a classic too.

The PLD programmer is still on my list to work on as soon as
I can get this conversion project done. Iwant to discuss the PIC
processor, which is getting so much press in connection with
The BASIC Stamp, and compare it to the Motorola 68HC11.
My first feeling is that the PIC is a step backward and that,
dollar for dollar, the ‘HC11 is a far better buy and easier to
work with, More on this later.

Remember my GEnie email address is F.SERGEANT or,
through the internet, f.sergeant@GEnie.geis.com in case I say
to hell with school and lose my fs07675@academia.swt.edu
account.

END

16

“Unipolor Drive Circuit ;

@® 6 LEADS

@ 8 LEADS

BLACK A swi
~

T ORANGE A sw2
_WHITE/ORANGE
WHITE/BLACK
WHITE/vELLOWS
WHITE/RED
RED

a O »
T

FOUR-STEP INPUT SEQUENCE" (Full-step mode)

STEP SwW1 | swa2 sw3 swa
1 ON OFF ON OFF
2 ON OFF OFF ON
3 OFF ON OFF ON
4 OFF ON ON OFF
1 ON ' OFF ON OFF

*Provides CW rotation as viewed from nameplate end of motor.
To reverse direction of motor rotation energize steps in the
following order: 1, 4, 3, 2, 1.

EIGHT-STEP INPUT SEQUENCE" (Half-step mode)

STEP swt | sw2 sw3 swa
1 ON | OFF ON OFF
2 ON OFF OFF OFF
3 ON . OFF OFF ON
4 OFF | OFF OFF ON
5 OFF | ON OFF ON
6 OFF .| ON OFF OFF
7 OFF | ON ON OFF
8 OFF . OFF ON OFF
1 ON ' OFF ON OFF

*Provides CW rotation as viewed from nameplate end of motor.
To reverse direction of motor rotation energize steps in the
followmg order: 1, 8,765, 4, 3, 2,1

@ GRIENTAL MOTOR

QRIENTAL MOTOR U.S.A,, CORP.
Head and Los Angeles Office:
2701 Plaza Del Amo, Suite 702
Torrance, CA 90503-7395

The Computer Journal / #69

Series ULN-2001A devices are general purpose mo
arrays that may be used with standard bipotar digital ourPut
logic using external current limiting, or with most
PMOS or CMOS directly. All are pinned with out-
puts opposite inputs to facilitate printed wiring board output is not a concemn. These devices will sink a
layout and are priced to compete directly with dis- minimum of 350 mA when driven from a "‘totem
crete transistor alternatves. pole” logic output. BUFFER FOR HIGH-CURRENT LOAD USE OF PULL-UP RESISTORS

Series ULN-2002A is designed for use with 14 to Series ULN-2000A is the original high-voliage, TO INCREASE DRIVE CURRENT
25 V PMOS devices. Each input has a Zener diode high-current Darlington array. The output transistors
and resistor in series to limit the input current to a are capable of sinking 500 mA and will sustain at
safe value in that application. The Zener diode also o ULN-20044 ULN-2003A
gives these devices excellent noise immunity. . . . — ‘Y *Vee N

ber Dasignation L —

Series ULN-2003A has a 2.7 ki) series base Device Number Designati - 'S] Ir
resistor tor each Darlington pair, allowing operation Vown | 50V] sov 1 esv | 2 “""D"lﬂ_‘ 15 2> I5
directly with TTL or CMOS operating at a supply bears l 500 mA l £00 mA [500 mA l 3 .__{>. n 5 jre. .
voltage of § V. These devices will handle numerous Lo "{>: [’H !

. 5 . Logic Type Number n

interface needs — particulurly those beyond the —- G 13 3 __{)H 13

capabilities of standard logic buffers. (General Purpose | iy 5001a [uin-2011A | uLN-2021A ry SR 53 *r Lo
PMOS, CMOS o 31— 17

Series ULN-2004A has a 10.5 k series input T > o Lo
resistor that permits operaton directly from CMOS PMOS ULN-2002A | ULN-2012A | ULN-2022A Lpq 2000 - jrew I
or PMOS outputs utilizing supply voitages of 6 to 2 1 pavan Koaled 3> y
15 V. The required input current is below that of TTLSCVMOS ULN-2003A | ULN-2013A | ULN-2023A 7% [‘N‘— L]
Series ULN-2003A, while the required input voltage u Tl
is less than that required by Series ULN-2002A. CMS.SISPVMOS ULN-2004A | ULN-2084A | ULN-2024A - " emn

Series ULN-2005A is designed for use with — 1 3
standard TTL and Schottky TTL. with which higher WighDulpst | w2004 | WLN-2015A | ULN-20250 Foa N %
output currents are required and loading of the logic oureut

PRNTGD @) LA
: . 00 NPRNTSEL (3)
ez M
A NRPA (D
sIR D NRPS ()
NRPC (3)
=4
W g; INC.2 NIRGEN
e Vsee
IROEN (D
.‘.‘S.Lrgl‘g‘ 5‘))
NAU 3
NN 3% NSTROBE (3).
5V =l ‘{>},z INIT (D)
s US us > SV &2
e ‘i" Samgamansy l ans TR ST \
e02-71 (3 iK1 12) us
P B A T,
5(>“§;. L1ses ANy %
LSO% Lses "
05 -3
L C+ 19
NERESET Q) T 0022 0
- 2
F(4
3 IRQ7 0?
24
25
[« ¢)]
B Y
Vee susy
° Q 12 (o] 2] 2 NPG (3)
¢ /32 g ’5 TR} NSLCTIN (3)
0 _. OH 4
oI ak 3 s NERROR /3)
05 ofa @
o3 ald —7
° Q2. +— 8
] o a? T >
calevionlenlazias rn_:cu'l
0t1] [ooefenzzfoare] e fondy
o ~ - 2R00-7 (3)
Typical Centronics/Parallel port on PC/XT FDC/Printer adapter.
17

SERIES ULN-2000A
7-CHANNEL DARLINGTON DRIVERS

SERIES ULN-2000A
HIGH-VOLTAGE, HIGH-CURRENT DARLINGTON ARRAYS

HESE HIGH-VOLTAGE. HIGH-CURRENT

L Darlington arrays are comprised of seven silicon

NPN Darlington pairs on a common monolithic sub-

strate. All units have open-collector outputs and in-

tegral diodes for inductive load transient suppres-
sion.

Peak inrush currents 10 600 mA (Series ULN-
2000A and ULN-2020A) or 750 mA (Senies ULN-
2010A) are permissible, making them ideal for driv-
ing wngsten filament lamps.

PMOS
wreur

PMOS TO LOAD

ULN-2002A
Vs

TYPICAL APPLICATIONS

v

TIL TO LOAD

ULN-2003/54

The Computer Journal / #69

The Z-System Corner li
By Ron Mitchell

There was a programmer of wisdom

Who wrote a small patch for his system
The aim of the code was to make bugs ex-
Dplode,

But his T-CAP fell off and he missed ‘em.

(Cue: groahing, laughter and applause)

Nothing worse than suffering from an
inadequate T-CAP, or TCAP as it’s more
properly known, especially when you're
trying to write second grade limericks.
More about that later. (Not the limer-
icks, the TCAP)

I need to know who you are. There are
numerous ways of approaching this se-
ries of articles on Z-System. The best
one will find its way onto these pages
only if I hear your comments and ques-
tions. If you are like the various groups
of computer users I've had the pleasure
of knowing over the years, you have
diverse experience and various levels of
knowledge. That in itself makes a series
like this somewhat difficult to write. If I
make it too basic, I'll lose the old hands.
If T get too technical (assuming that I
could) the new people frying Z-System
for the first time will get up and leave.
Can’t win for losing.

I am on internet through the facilities of

the Ottawa Freenet:
ac087@freenet.carleton.ca

Or just plain old Snail Mail:

Apt. 1107,

210 Gloucester St.,

Ottawa Ontario

Canada, K2P 2K4

Finally if you’d like to check out one of
the few PBBS 5.0 Bulletin Boards oper-
ating on a Coleco ADAM, you can call
(613) 230-9511. The “Byteman” oper-
ates limited hours between 11pm and

18

5pm daily, 11pm to 8am Saturday, Sun-
day and holidays. Parameters are 300/
1200/2400 8N1.

One way or another, get in touch. I'm
open to suggestion on the content, level
of difficulty, and format of these articles.
I"d also like to hear some of your expe-
riences with Z-System and how you’re
using it. '

Unfinished Business

There are items of business left from the
last installment; we’ll pick them up here.
We'll begin by completing an overview
of the structure of the CP/M operating
system and then follow with a descrip-
tion of the role played by the various
component parts. With this understand-
ing under our belts, we’ll be in a better
position to understand in future install-
ments what Z-System does differently.
While doing all of this we’ll want to
cover some general ground rules having
to do with syntax and how it is normally
expressed.

All of this is going to prepare us to
actually load Z-system at the beginning
of the next session. Before we do, we
have some groundwork to complete that
we began in the first installment and
that will put us in good shape to really
get down to the job at hand in the next
instaliment.

Off to a flying Start

At the outset, there are a couple of as-
sumptions to be made.

1) You know where your CP/M disk is
and you've booted it up once or twice.

2) You have purchased Z-System

(NZCOM or Z3PLUS) and you’re won-
dering what to do next.

3) You have an open mind and would
like to know more about Z-System.

Also, for the record let’s get our prod-
ucts straight:

ZCPR2 and ZCPR3: Written by Rich-
ard Conn 1982 - 1984 (give or take).

NZ-COM: written by Bridger Mitchell
and Jay Sage; the docs are dated 1988.
This program is the Z-System for CP/M
2.2 machines.

Z3PLUS: written by Bridger Mitchell
and Jay Sage. This is Z-System for CP/
M 3.0 or CP/M Plus systems.

The history has it that there was another
individual deeply involved in the transi-
tion between ZCPR and Z-System. That
was Joe Wright. More about him in a
moment.

Somewhere in the mid eighties, when I
had bought my first implementation of
CP/M 2.2, I was after all the books on
CP/M that I could get my hands on. The
manual that came with CP/M for my
system had one or two chapters right at
the beginning that I could understand.
Then it took off into a netherworld of
technical explanation which reaily left
me struggling. I came back to it later
and understood it, but only with a little
help from my friends. There was a pe-
riod of time when most of the CP/M
‘newbies’ on my block were reacting
much the same way. Those who had the
nerve to download one or two of the
public domain offerings on local BBS’s
ran up against the implementation prob-
lems of installing something that was

The Computer Journal / #69

originally written for a Kaypro or an
Osborne. The terminal most of us used
required Zenith/Heath emulation but we
didn’t even know that, nor the meaning
of the word ‘patch’.

The early documentation seemed to be
written for people who already knew
what they were doing, and certainly I
was not alone in making this assess-
ment. It took some time spent in read-
ing, re-reading, thinking about, and ask-
ing just to arrive at the level of under-
standing I have now. And that is by no
means complete. There are always new
things to learn. ‘

Some Help from my Friends

A friend of mine one day, spying on my
desk a copy of “The Soul of CP/M”
(Mitchell Waite, Robert Lafore - Waite
Group - Howard W. Samms, 3rd print-
ing, 1986 - ISBN 0-672-22030X) asked
me if I'd installed ZCPR yet. When 1
said no, he more or less intimated that 1
would not be a true CP/M user unless
and until I did. He added that if I could
get ZCPR up and running on my Coleco
ADAM 1 could credit myself with the
equivalent of a degree in computer sci-
ence.

Knowing what I know now, I suspect
that he may have been quite right. It
seems to me that installation of ZCPR
would have required a knowledge of Z80
assembly language even though most of
the code files I've since seen are more
than well commented. It certainly would
have required knowledge of how to use
an assembler, linker, loader, and librar-
ies of standard routines. And it would
have necessitated full knowledge of the
size of one’s own system and how to
generate replacement versions of CP/M.
Then there would have been the joys of
adapting the system to different combi-
nations of hardware. It was all possible,
but you had to know what you were
doing.

Enter Joe Wright. The preface to the
Z3PLUS describes it this way:

“Joe Wright brought automatic opera-

tion. It was he who first conceived of
and demonstrated with Z-COM what

The Computer Journal / #69

many deemed impossible - a version of
Z-System that would install itself auto-
matically on almost any CP/M 2.2 com-
puter. Yet, even after Z-COM’s success,
it still appeared that Z-System could
never run on a CP/M-Plus computer with
its radically different command proces-
sor and banked memory operating sys-
tem. Z3Plus proves otherwise.”

The preface goes on to state the contri-
butions of Bridger Mitchell and Jay Sage
in the development of Z-System. Bridger
made the systems universal. He devel-
oped the ZRL file format and loader
which would allow a single file to adapt
to any Z-System. Jay Sage added what
the preface describes as “dynamics”, the
ability of the operating system to change
its size and characteristics to suit the
need at hand, right in the middle of a
command line if necessary.

As this series goes on, we will come to
appreciate these things more and more.

The Basics

For the moment, let’s continue with the
basics. In your computer there is memory,
probably 65,536 places, pigeon holes,
empty boxes, call them what you will. In
the last instaliment we broke down briefly
what these memory locations might be
used for. You might even have more
than 64K. You might have 128K, and
perhaps your processor, the Z80, is ca-
pable of looking only at 64K at a time,
s0 you're into bank switching. But let’s
not get too complicated.

Consider the work that has to be done
when you sit down in front of your sys-
tem to make an immensely significant
contribution to the world of computing.

No matter what you're trying to do, it’s -

quite likely that you will want the fol-
lowing capabilities:

- to output a character to some sort of
display device.

- to receive information (characters)
from the keyboard or some other type of
input device.

- input and output of data from and to

a storage media; disks, tapes, hard drives,
etc.

The list goes on. But no matter what
type of application you’re using or what
program you might be writing, your job
can usually be broken down into some
very simple tasks involving the move-
ment, management and processing of
data. And the plain fact is, the contents
of your computer’s memory is one of two
things: data or instructions.

The ZCPR3 Manual makes the picture a
little more detailed. It talks about 1)
Memory; 2) Processors and Processes (a
process is a running program); 3) De-
vices; and 4) Information.

Author Richard Conn talks about
memory management, process manage-
ment and device management. CP/M
doesn’t do much about the first two. It
doesn’t allocate memory, and since there
is only one processor there is really not
much in this realm to manage. Where
CPM excels is in the area of device
management. No matter what you’ve got
hooked up, CP/M creates a standard way
of looking at the peripherals. The pro-
grammer doesn’t have to know how the
individual device drivers work. All he
has to know is that they are all accessed
through the standard BIOS or BASIC
INPUT/OUTPUT SYSTEM. There is a
jump table of instructions located at the
beginning of the BIOS. Each entry in
the table is 3 bytes long, and no matter
what CP/M system is being used, the
functions are always in the same order.
The programmer nceds only to know
what the functions do, what information
or parameters are needed as input, and
what information or parameters are re-
turned by the function when it has done
its job. It’s sometimes referred to as a
‘black box’ mode of operation.

Since this is not a course in CP/M we’ll
stop right there. Essentially the process
is to use assembly language to load cer- -
tain registers in the Z80 processor with
the values required by the particular rou-
tine being called. You then call the rou-
tine and check certain other registers for
the data which the routine has provided.
Perhaps this particular routine will be
called several times so as to get, for

19

example all the characters, one at a time,
that a user types before typing a return.

The BIOS is one major portion of CP/M.
There is also a ‘System Parameter’ area,
the BDOS and the CCP. The more you
rub shoulders with CP/M folk, the more

_you’ll hear these terms being bandied
about.

The System Parameter area is often re-
ferred to as Page Zero or the first 256
memory locations between 0000H and
0100H. This area is reserved by CP/M

for certain vital information about where

various elements of the system are lo-
cated. That’s probably oversimplifying
it somewhat, but it’ll do for the moment.
Needless to say we don’t write anything
into page zero unless we’re firmly con-
vinced that we know what we’re doing.

The BASIC DISK OPERATING SYS-
TEM or BDOS looks after information
management. It allows you to select a
disk, create a file, open a file, close a
file, rename a file, delete a file, set the
memory address in the computer to which
data is written, and read or write a block
from a file.

Now when I first read all of this, it
seemed to me that there wasn’t anything

. very sexy about any of it. It’s very boring
stuff, but when you think about it, it’s
absolutely essential to anything you
might want to do with your computer.
The better you know the structure of CP/
M, the more you’ll appreciate the Z-
System enhancements which we’ll start
talking about in a moment or two (hon-
est).

The BDOS provides 37 standard func-
tions. Any good book on CP/M lists them,
and describes the parameters they need
and the registers they use for input and
output. I can spend more time with this
in future articles if there proves to be a
need. Most beginner’s courses on as-
sembly language programming that use
the CP/M operating system start you out
by having you write a Z-80 program that
simply puts 1 character on the screen.
Not much you say, but crawling is best
mastered before walking and running.

20

One of the concepts I had a great deal of
difficulty with at the beginning was that
most of these functions do their thing
either 1 byte at a time or some very small
group of bytes at a time. It was difficult
to see how anything of substance was
going to be achieved with such small
steps. What you have to remember is
that the Z-80 processor is performing
these small steps at a very fast pace. You
won’t have time to eat your lunch while
you’re watching. So it dawned on me
that each job that a computer does is
made up of very deliberate single steps.
Go get an underline character 80 times
and presto, you have a line across the
screen. Repeat that process 4 or 5 times
and you have a thicker line.

Moving along, we’ve talked briefty about
Page Zero and the BIOS and the BDOS.
I would really like to recommend that
you find and read a good introductory
text on CP/M in conjunction with this
series. I've got two here that are con-
stant companions: “The Sout of CP/M”
referred to earlier, and another called
“Mastering CP/M” by Alan R. Miller
(Sybex 1983 ISBN 0-89588-068-7)

You’ll find that when you’ve got CP/M
booted, the BIOS and BDOS don’t jump
right up and introduce themselves right
away. And Page Zero doesn’t really put
up a sign saying, “Please Stay Out!” In
fact all you get is:

A>

Perhaps if you're a Canadian we should
rewrite that: '

EH>

And there you and your computer sit,
staring at one another. There are two
things required for anything further to
happen. Your command and another part
of CP/M known as the CONSOLE COM-
MAND PROCESSOR or CCP. The CCP,
as the cliche goes, is where the rubber
hits the road. Richard Conn calls it the
“human interface.”

In fact the CCP under vanilla CP/M is
not very smart. It only knows six words.

These are the six ihat we talked about in
installment 1:

DIR ERA REN USER SAVE TYPE
That’s it, that’s all.

Type something else:

EH

EH is not one of the six built in com-
mands, so the CCP assumes that you’re
looking for a program name on the disk
and goes to look there for a directory
entry that matches what you typed. If it
finds one it attempts to run a program by
that name. If it does not it comes back to
the screen and types your command fol-
lowed by a question mark.

A> EH?
Filling up the Memory

So let’s recap. The diagram you’ll no
doubt see in your favorite CP/M text

might look like this:

----- ~—————————— High Memory
| |
| BIOS |
———————— BDOS+0EOOH
| |
| CPM 2.2 BDOS |

—_— CCP+0800H
| |
|CPM 22 CCP |

TPA p——————— CCPBASE
| I
| Scratch area |

' 100H
| I
| CP/M Buffers etal |

b OH

Here’s To the Relatives

There are two things to get used to here.
The first is the expression of various
points in memory in relative terms. In
other words, the beginning of the BDOS
is 800 Hex bytes above the beginning of
the CCP. Why not express it as a fixed
memory address? Well, you might have
64K of memory available, or 48K or
something else. Addresses may vary from
one machine to the next, but the relative
positioning of the start of each segment
is the same. The area between 0100H
and the beginning of the BDOS is known
as the Transient Program Area or TPA.

The Computer Journal / #69

The larger your TPA, the larger the ap-
plication you can run.

The second thing to get used to is the
expression of memory locations in hexa-
decimal rather than decimal. You can
convert the values if you wish, but you’ll
find that most people don’t in this world.
" Hexadecimal arithmetic more closely
matches the 8 bit setup within the com-
puter.

There is another aspect of the basics that
caused me difficulty. That was the nota-
tion that CP/M writers used to convey
generalized forms of specific instructions.
This type of notation is not confined to
CP/M nor solely to the field of computer
science. To illustrate, you might see
something like this:

PIP destination=source#1,source#2,...,source #n
or

MLOAD [<outnam=>][<filel.type>,] <file2>[,
<file3...>] [bias]

or something as simple as:
COPY [du:] afn [du:]

Again, we’re going to use this notation
because it’s fairly standard among CP/
.M users, I certainly can’t think of any-
thing better. There are the following
general rules:

1) AFN and UFN stand respectively for
ambiguous filename and unambiguous
filename. You have no idea how long it
took me to figure this out. It may well be
printed in several places at the begin-
ning of each and every CP/M text I own,
but the moment I see either one I'm
infuriated. Question: why the heck don’t
they just say what they mean? A filename
that contains wild card characters, or a
filename that does not contain wild card
characters.

2) Information contained within angle
braces <> is information that must be
typed exactly? Well no, not exactly. As
far as I can tell it means something more
along the lines of fill in the blanks
with your own information.

The Computer Journal / #69

3) Most always, information contained
in square brackets [] means that the in-
formation specified is optional. That is,
you can leave it out without affecting the
operation of the command or program.

4) DU: or du: stands for drive/user. So if
you see AO:FIDLEFUD.COM that would
be a .COM file named FIDLEFUD lo-
cated on drive A: user area 0.

5) outfil or outfile and infil or infile
usually require you to substitute the
names of your input and output files in
the order specified.

6) and of course if you remember high
school math you know that:

file#1 file#2 file#3,...... file#n

means keep adding filenames to fill your
boots.... as many as you have need to
process, or until you fill up the com-
mand line buffer. The value #n is meant
to refer to the last one in the list of files
to be processed, however many there
might be.

You old hands may laugh, but you’d be
surprised how easily we of the novice
category become confused. Sometimes
several strings of this type of notation
written and intended in good faith are
enough to send us away forever. We
might never be back.

Exit, Stage Left

This seems like a good place to stop.
During this installment and the last one,
we’ve dealt as much with CP/M 2.2 in
its ‘vanilla’ state as we have with Z-
System. From here on in that will change.
In the next article we’ll begin with a
discussion of some of the advantages of
Z-System, and we’ll re-draw the memory
map that appeared here to show you how
Z-System adds to the capabilities avail-
able while retaining compatibility with
CP/M.

We’ll also have some information for
you on the various sources of assistance
available for Z-System users. There’s a
lot of help out there even yet. And fi-
nally, we’ll get back to and take care of
the problem of the inadequate TCAP.

4 A

Do you need
Micro Cornucopia Disks?
Echelon Publications?
Boot Disks?
Disk Copying?

Lambda Software Publishing

can now supply reprints of
Micro Cornucopia Magazine,
Kaypro Disks, Boot disks, CP/M
2.2, ZCPR and CP/M programs.

Kaypro disks $5.00
all 49 disks $200.00
Big Board disks $5.00
all 30 disks $100.00
Catalog of disks $5.00
Disk Copying $10.00
MicroC reprints $8.00
Z-Letter back issues $3.00
CPM 22 $25.00
CP/M Plus $25.00
Spellbinder v5.3H $60.00
Echelon Publications $15.00
Four or more $10.00
User Guides:
ZCPR 3.3, Z-System, ZAS/ZLINK,
ZDM/ZDMZ/ZDMH, JetFind, and

many other Manuals.

Sound Potentials Public-domain
software - catalog $10.00
Any disk in collection $10.00/disk

Contact
Lambda Software Publishing
149 West Hilliard Lane
Eugene, OR 97404-3057
(503) 688-3563

N ¥

21

Dr. S-100

By Herb R. Johnson

“Dr. $-100’s Fall column” by Herb
Johnson (c) Aug 1994
Internet: hjohnson@pluto.njcc.com

Introduction

Given the rising costs of the IDE S-100
project, I've decided to strip it down to
just the “chip” and wirewrap. That is,
you’ll have to hand wire the chip to a S-
100 prototype card. Details are contained
in a separate article this issue, written by
Clande Palm of Palmtech who devel-
oped the chip, and myself. I know of at
least one reader who is interested: check
my mail below.

1 got some nice deals on a few systems,
and I discuss the problems of shipping
and purchasing. And as usual I'll share
my correspondence. Notably, this in-
cludes some further discussion of Digi-
tal Research GSX by Emmanuel Roche.

Networking

I've joined the other techno-lemmings
and got an Internet account a few months
ago. Rather than pay the connect-time
charges of one of the big networks like
Compuserve or Genie, I decided to sup-
port a new guy in the neighboring town
of Lawrence NJ. The New Jersey Com-
puter Connection (NJCC) is like many
local BBS’s that have sprung up in the
last several years, except for two things.
It runs under Linux, a “freeware” Unix
compatible OS; and it has a connection
to Internet instead of one of the many
dial-up BBS networks such as Fidonet.
For a flat fee each month, I get unlimited
access (except when the lines are busy)
and a modest amount of disk space. See
my “references” section for my ‘net ad-
dress. I'd recommend the news group

22

“comp.os.cpm” for most of our CP/M-
based readers.

My biggest challenge, after dealing with
the odd syntax of Unix, was to find an
“off-line reader” that could accept a
downloaded file of mail and news, allow
me to read it and respond, and would
package my responses for uploading back
to the Linux/Unix system. This is the
only way to cruise the Information High-
way: staying on-line for hours ties up the
phone! The reader of choice for my MS-
DOS machine (sorry) is yarn, which is
available as shareware. Check your fa-
vorite Unix site or large MS-DOS de-

pository, or ask your sysop.

For those of you who can’t afford this or
who do not have a network provider in
your area code, you can still find a lot of
activity on the many BBS-based net-
works. FidoNet has been around for
several years, and carries the
“CPMTECH” conference area. Most
major metropolitan areas have a Fidonet
node somewhere. There are other re-
gional, national, and international net-
works of this kind: ask your local BBS
operator for details.

Correspondence

If possible, please include your network
address or BBS location if you have
one. This will allow myself and others to
respond to your requests. And, if you use
an address of any sort from my column,
please note the source! And, if you want
our correspondence private, please tell
me so: otherwise I presume you really
want to hear from other S-100 owners
and welcome a place in my column. I
will use some discretion in my quota-
tions and comments.

1 may not answer your letter immedi-
ately: let me know if it is urgent. It
would also help if you include a phone
number, or even a reply postcard! If you
want a system or cards, it would help me
alot if you tell me what you have or want
in detail (if you can). And, tell me where
you heard about me.

Emmanuel on GSX for CP/M,
Amstrad, NCR

Emmanuel Roche of Troyes, France
continues to inform me on his progress
on interpreting Digital Research’s GSX
graphic standard. In June he sent me a
copy of a Byte Magazine article (printed
from a disk file) from February 1983 (p.
256) “Realizing Graphics Standards for
Microcomputers” by Fred Langhorst
(Digital Research) and Thomas Clarkson
(GSS). Also, Emmanuel has been work-
ing on disassembling the Amstrad
PCW8256 BIOS ROM and sent some
results to me: anyone interested should
contact myself or him. He is also work-
ing on the NCR DecisionMate V and
needs info on its I/O port assignments.
He asks <with my comments in brack-
ets> “The <NCR> driver uses four I/O
ports; 10H, 11H, 0AOH, and OA1H. From
the code, Emmanuel thinks 0AOH and
0A1H give access to the NEC uPD7220
GDC <graphics chip?> and that ports
10H and 11H give information about the
hardware Could someone confirm and
give the requested technical informa-
tion. Emmanuel does not have an NCR
available: he merely disassembled the
NCR driver to see how DRI did it...and
maybe he’ll port it to the Epson QX-10
which uses the same NEC chip.” He
enclosed an ad of an Illuminated Tech-
nologies S-100 card which also uses this
graphics chip. He says “a GSX driver for
this board would have boosted the S-100

The Computer Journal / #69

bus with superior graphics...and prob-
ably launched a whole industry. But DRI
didn’t write it...”

Regarding GSX, he writes: “TO contrib-
ute to rolling the ball of GSX a little
further, enclosed you will find an article
explaining GSX and an example of its
use: a <plotter> graph with your name
<and a color bar chart!>, GSX is a CP/
M 2.2 program, so it will run under Z-
system (<although> I am strictly DRI-
compatible). The only (and big) problem
is the CRT driver: very few were written
for CP/M-80, as DRI was switching to
the 16-bit wonderland <8086> at that
time.

He later reports in July <again with my
comments>;"Yippee!!! Success at last!
The Epson FX-80 GSX printer driver is
finally available! <He has been working
on this for some time, based on interpre-
tations of other DR’s drivers.> Now that
this powerful GSX driver is available,
the road is open for more physical de-
vices, like laser printers...

Please report to your readers that
“Emmanuel Roche is looking for people
still using CP/M, but using a laser printer
such as the HP LaserJet 4 or Canon
LBP-8 IV, in order to beta test GSX
printer drivers. You will be requested to
provide some technical infos to write
five hardware specific routines. GSX
screen drivers are available for the
Amstrad PCW8256 <a popular Euro-
pean CP/M Z-80 system>, Epson QX-
10, NCR Decision Mate V, and DEC
VT-100 terminal <a close cousin of
ANSI, I believe>.”

“Personally, as told in my last letter, I
am working on the NCR CRT driver.
The only thing I don’t understand so far
is the use of /O ports 10H and 11H. If
one of your readers of TCJ could write to
tell me the truth or to confirm my guesses,
I would be most grateful (and he would
get a copy of the source code!).

“I also plan later to work on the Amstrad
screen driver, because it is the most suc-
cessful GSX microcomputer ever, hav-
ing sold more than 1,250,000 units
<lwow!>.”

The Computer Journal / #69

Although Emmanuel tells me “he’s not
looking for personal publicity” in writ-
ing to me, I nonetheless encourage him
to put together an introductory article on
GSX, once he feels he has a good enough
understanding to develop a “complete”
description for distribution. I'll send
some of this info to David McGlone of
Lambda Software, who has a license
agreement with the former Digital Re-
search. I'll refer his Amstrad work to
Elliam Associates who supports the
Amstrad. I'm impressed by the sheer
number of machines produced!

News from England

As usual, Emmanuel encloses the Disc
Library News newsletter from the
Windsor (England) Bulletin Board
User’s Group. He suggests that “their
morale is low <and> they need some
boost”. Indeed, the newsletter says their
harddisk crashed and their library of
disks has only received a few dozen re-
quests. Their library is up to volume
139; they report 17 volumes of various
utilities such as assemblers, text tools,
editors, unARCers, and so on. Some of
them I recognize as pretty familiar. A
catalog disk is available.

The Editor notes that our own TCJ re-
ports a drop in Z-systems sales; Jay
Sage’s discussions of 4DOS over Z-sys-
tem; and “TC]J itself has decided to allot
10% of its space to DOS” as suggestions
that “the writing is on the wall....?”.

Fair Trade

A. H. Smith of Alexandria VA thanks
me for the Compupro information he
requested. He’s working with a
Compupro 8/16 system (later copies as

the Heath Z-100 design). He tells me “I .

have recently horsetraded some PC
equipment (the stuff was junk to me) for
several late-model Compupro boards, as
follows;

Disk 1B <a 5"/8" floppy disk controller>
M-Drive H (512k) <a RAM disk card>
CPU 286 <and 80286 CPU card — yes,
on the S-100!>

SPIO <an I/O card, you guessed it>

These have the voltage regulator jump-
ers for the IEEE 696 “B” standard, where
the supply voltages are +5V and +/-
12V. If you are interested in trading
hardware, I could easily be convinced to
trade the a System Support II card for an
Interfacer 4 <both I/O cards of various
sorts>, trade the ‘286 for a Disk 1A, or
whatever. Since I am not particularly
fond of RAM disks, I might also be
tempted to part with one or more M-
Drive cards.

Have you had any requests for “late
model” Compupro equipment? There is
a guy in California who retails
Compupro/Viasyn <the latter was a brief
name change for Compupro> hardware
and software at exorbitant prices, such
as $400 for a System Support II.” Again,
thanks very much for your assistance. If
you have any other “requirements” for
S-100 equipment, including Northstar,
please let me know.”

“The Dr.” (that’s me) often enjoys these
kinds of trades and mutual assistance.
It’s likely some else has the board or
manual you need, or needs the stuff you
have, so I enjoy being the “matchmaker”.

The Oldest S-100 system in continu-
ous use?

How long has your system been up?
Ramon F Gandia of Nome, Alaska tells
me:

“ The S-100 IDE/floppy adaptor you
described sounds great! Let me know
where to send the money! <My friend!>
My Altair 8800 has been running since
1979, and I switched to CP/M about 5
years ago <!> when the old MITS <the
company that built ‘the Altair> drives
became flaky. I am using a Fulcrum
<the company that “succeeded” IMSAI>
Omindisk controller, but I had to do
most of the BIOS and all of the boot
<code> because Fulcrum’s software was
written for the Z-80 and wouldn’t runon .
my 8080 MITS cpu card. Thus far I am
running on 5" floppies since I haven’t
located a WD-1002-05 controller card.”

<The Dr. believes this is an old SASI
card that converts MFM hard drives to

23

the SASI standard, an older version of
the SCSI interface. Anyone who has this
card may want to contact Ramon.>

“In any case, an IDE drive would be
better. Some IDE drives have as much as

a 256K buffer which would make an old
Altair really fly! <Imagine the possibili-
ties....!> In my system I have a Memory

. MErchants 64K RAM card, with the
last chip a 2716 <PROM> where I put
my boot code, Alan Miller’s monitor,
console and printer routines (BIOS call-

_able) and a routine to receive on a serial

port and to put the data into memory .

starting at 0100H <CP/M TPA>. On my
ibm pc I have an EPROM burner, and
over the years I have had a lot of fun
with this setup; now on version 57 of the
EPROM chip!”

Thanks for such an enthusiastic letter,
Ramon! This is indeed a useful combi-
nation! You should write it up in detail
for TCJ; it would be adaptable to any Z-
80/8080 development environment!
Ramon also referred me to a source of
IMSAI stuff, a guy that is “sitting on a
pile” but “he never gets around to it on
these little sales”. Sigh. Just as for the
$400 Compupro board, there are enough
industrial users of these systems that
three-digit prices (and presumably ser-
vice) are supported. After all, that WAS
their original price!

A long “weight” for a system.

Billy Munroe of Spring Hill, FL “nceds
an S-100 system to help me with a cor-
respondence course. (It makes lots of
references to the S-100 and a paper punch
machine.) Could you please write me
with a price (or price list) for my realis-
tic want. Thank you.” If anyone has a
system for him for an apparently modest
price, contact Billy.

The problem from my end, Billy, is the
shipping costs. For example, I just got a
60-1b box from California: by UPS
ground shipment, it cost about $25. Even
by the cheapest rate, U.S. Post Office 4th
class book rate, it cost $11 to ship 35 lbs
of books! When you consider a “system”
of an S-100 chassis with power supply
and cards is 25 to 50 Ibs or more; books

24

and disks maybe another 25 Ibs; and 8-
inch disk drives of around 50 Ibs; you'll
end up spending about $50 more-or-less
in shipping costs.

What 1 can do, other than post the re-
quest, is connect people like Billy with
people near him who have notified me a
system is available. Unfortunately, by
the time I’'m told a system is “available”,
it’s just before it hits the dumpster! I still
encourage people with systems about to
be tossed to contact me - I may pay the
shipping and more anyway, or I can
make some referrals.

Quick notes

I want to acknowledge mail from Gary
Cooke of Washington IL, who is val-
iantly struggling with a Morrow S-100
machine and who discusses this on
FidoNet; I’ll write more on this next
issue. Kent Walters of Ogden UT says
“I offer him a glimmer of hope” in get-
ting info on his new Vector Graphic S-
100 “Vector 4” computers (I think I can
help!).

References

Emmanuel Roche, 8 rue Herluison,
10000 Troyes, FRANCE.

Windsor BBUG, 11 Haslemere Road,
Windsor, Berkshire ENGLAND SL4
5ET.

Art] Smith, 1808 Jamestown Rd., Alex-
andria VA 22308.

Ramon F Gandia, P. O. Box 970, Nome,
Alaska 99762,

Billy Munroe, 20829 Moreland Dr.,
Spring Hill FL. 34610.

Gary Cooke, 200 W Monroe St., Wash-
ington IL 61571-1466.

Kent Walters, 3159 Ogden Ave, Ogden
UT 84401-3905.

WANTED

TCJ needs your embedded
story or project!

Our readers are waiting to hear from
you about how you developed that
embedded project using 8051 or 6805.
Used Forth, "C", BASIC, or assembler
any language is fine, just tell us what
happened, how you did it,and how it
ended up. No project too small!

Send those Ideas to:

The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535

CLASSIFIED RATES!
$5.00 PER LISTING!

TCJ Classified ads are on a prepaid basis
only. The cost is $5.00 per ad entry.
Support wanted is a free service to sub-
scribers who need to find old or missing
documentation or software. Please limit
your requests to one type of system.

Commercial Advertising Rates:

Size Once 4+
Full $120 $90
1/2 Page $75 $60
1/3 Page $60 $45
1/4 Page $50 $40
Market Place $25 $100/yr
Send your items to:

The Computer Journal

P.O. Box 535

Lincoln, CA 95648-0535

When calling TCJ advertisers,
Say you saw it in TCJ!

The Computer Journal / #69

TCJ Center Fold

S-100 IDE Project Progress Report
(c) Herb Johnson 1994. Portions (c) Palmtech 1994

Early this year, I was contacted by Claude Palm of Palmtech of
Queensland, Australia. He is a developer of Z-80 and Z-180
(pronounced zed-one-cighty, incidently) systems, and a user of
S-100 systems for prototyping. While developing a compact Z-
180 system, he came up a cute little single-chip solution for

IDE drive interfacing, and offered the chip to me for consid- -

eration. We spent some time in correspondence, and I investi-
gated the costs of an S-100 IDE card. I reluctantly decided that
the startup costs and small quantity costs of such a product
would be too much for my meager budget of time and money,
and at $150 or more each as a selling price would also be too
“pricy” for many of my S-100 colleagues and readers.

Bill Kibler begs to disagree. He belicves that anyone with a
soldering iron and an wirewrap tool - and an S-100 fan - would
love to get one of these chips. After conferring with Claude, we
decided to offer the chip, a circuit, and some software to my
Loyal Readers to see where the winds will blow.

This issue, I'll present Claude’s early notes, some schematics,
and parts costs. Next issue, if I survive the flames of criticism
and IF I RECEIVE SUFFICIENT SUPPORTING CORRE-
SPONDENCE, I'll continue with more software details and
encouraging news. I *may* get Claude to discuss the process
of developing such a chip: he recently suggested “that would
fill a book”, but I encouraged him to think further. He will at
least show us a “state diagram” of the chip’s operation.

The following was written by Clande Palm of Palmtech (with
a little editing from me.)

Introduction

Inspired by the recent interest in both S100 systems and IDE
drives in TCJ, Palmtech has come up with a single chip IDE
interface for the S-100 bus: the PT IDE100. The chip comes in
a 68-pin PLCC package and performs all buffering, decoding
and 8/16 bit conversion required to operate one or two IDE
drives on an S-100 bus. There is additional on-chip circuitry to
attach a second I/O device, a floppy controller.

A home constructor could use a PT IDE100 chip to make a
“hard card”, i. e. an S-100 card with on-board hard disk drive.

The Computer Journal / #69

A low profile (LP) IDE drive can be mounted on the S-100
card, so that no external cabling is necessary. LP size IDE
drives are quite common, with low power consumption, and
modest cost.

Hardware

The “HARDBOARD” requires few components: the drive, a
PT IDE100 chip, regulators, resistor packs, decoupling caps,
an address decoder (for 16-bit I/O addresses if needed). Signal
(non-power) connections can be wirewrapped or, preferably,
point-to-point soldered. Wire wrapping will result in a triple-
thick card (with on-board drive and long wirewrap sockets).
Wirewrap PLCC and IDE sockets are more expensive than the
solderable equivalents.

Power and ground connections must be made with copper strip
or hookup wire and MUST be soldered. Good decoupling (with
bypass capacitors) is essential with hand wired connections,
even with heavy hookup wire. Minimum decoupling is with 2
tantalum caps and 1 ceramic cap at each regulator, 1 tantalum
and 4 ceramics at the PT IDE100 chip, and 2 electrolytic caps
and 2 ceramics at the IDE power connector. Skimping on these
caps or on wiring can generate voltage spikes during operation
which will cause unpredictable errors. See the HARDCARD
suggested layout. The drive cable is a short length of 40-wire
flatcable with IDC plugs at either end.

As there is space to spare on the HARDBOARD the PT
IDE100 has two pins (FIRQ and RESET*) to interface with a
DP8473 Floppy disk controller chip (FDC) from National
Semiconductor. The floppy disk registers map “below” the IDE
controller registers in the I/O map. (More information on this
extension will be available later. Only the chip, some resistors
and caps, and a crystal is required.) The DP8473 comes in a 52
pin PLCC package and supports four drives;, the 48-pin DIP
version supports 2 drives.

Register addresses will be called “X3” or “X7”: the “X” is set
by the user to be 0 through F to complete the 8-bit address. If
a sixteen bit address is needed, the 74HCT520 and the 8
jumpers will select the upper 8 bits of the address. If an
74HCT520 is not available, use an 521, ‘688 or an 689 but
include 8 2.2k pullup resistors (from the switch or jumper pins
to +5 volts).

Center Fold Section 25

26

HOALWIWd M qyvYDddavH

Comp list:

Ut PT IDE100

U2 7812

U3 7805

(U4 T4ACT520)

R1 330o0hm

R2 10k

RP1-2 2.2kx8

RP3 2.2kx4

C1-2 47uF tant/electro
C3-7 10uF tant

c8-14 0,1uF

JP1 4x2 (11x2 for 16-bit 10)

AO-3 READ WRITE
x0 FDC Status (4)] ===--
x1 FDC Read Data (5)| FDC Write Data (5)
x2 === FDC Drive Control
x3/7 Disk Changed Bit (7){ FDC Date Rate (7)
x4 Interrupt source = | —====
x5 | =----- | ===
x6 IDE Status 2 IDE Digital output
x7/3 IDE Drive Address FDC Date Rate
x8 IDE Read Data IDE Write Date
x9 IDE Error IDE Features
XA IDE Sector Count (Read/Write)
x8 IDE Sector Number (Read/Write)
xC IDE LSB Cylinder (Read/Write)
xD IDE MSB Cylinder (Read/Write)
xE IDE Drive, Head (Read/Write)
xF IDE Status 1] IDE Command
x3 and x7 are the same register

Table of I/0 registers.

Mechanical detail of the IDE connector

Center Fold Section

The Computer Journal / #69

feuotqoedipiq = 0OI

tandano = 0 ‘andul =

103NNOD ION 0Q ‘3sel

I ‘MO| ®AL3IO® 8830uUsp x

Jesay 004 oad
1888y ®ALJQ a1
(x00d ‘xS3Y 40) Jw8|D BARlS 001$
{=0IA JO ‘xIWN ‘xINI 03 40328 |0D uedo 001S
asenbss 3dnaaojul 204
asenbau 3dnuadejul 3g1
31G-91 8L O/I ®3eq 3a1
8qoJ3s e3iJM 0Q4d‘3al
eqoJ3s pesy 0Qd4°30I
sNnq |0J43U0D 0018
sNQ | 043u0) 001S
snq sna3els 0018s
snq snije3s 00L8s
1X-0% 31De|8s ssaJppy 004°30I
4X-gx 120(8S Sse.ppy 3al
sJedun(308|0Ss @dvds SS8JPPY O/I O2A/pub
snq sseJppy 004 ‘301
s$NQq s$s8.4ppY 001iS
ASW sSNg e3eqg 301
€857 snq e3eq 544 ‘34l
3no e3eq 001s
uL ejeq 00iSs
x X
114y x
337 x a
ssoLzlLoyYaQ
33 INQGE8E8ONLOSYLOSTY
PYSIYYYERTESTYYYY
£z2L068L9SPVEZTLOB6S8L
o/U{vr v P ¥ P EEEEEEEEEEZZT T O
oV 1S¥ s2
DHI4 19¥ ve
OHII {L¥ — £ LY BE LE SE EE |E B2 LZ — ET
L0Q 48Y ¥v¥ G¥ Zv¥ OF 8¢ 9€ ¥E 2E 0f 82 92 22
900 {6v 9% L¥ s2 ¥2 12
S00 {05 8% 6% €2 22 02
+00 1§ 0§ 1§ 28%208 0D1d Ul 12 0z 6l
OOA 42§ 2§ €6 sJaqunu utd 61 84 81
€00 {€5 ¥S S LL 91 Lt
200 1§ 9% LS 001341 1d SL ¥1 94
100 455 8% 6§ g1 2V S
000 {195 09 29 ¥9 99 89 2 + 9 8 LI O vl
g des L 1e9g9 59291 € 6 L 6/ €}
0180 18§ 1
6680 466 L
880 409 1 2 € P S 9 L 8 ot
9999998989 L2¢EcEvs59L86 [/
T 1 1 17 17 ¢t 1917 11T 17T 7T 1T 11
€E2Z21L10E21L0QQLY9SPLOSTY
I1II1188686e8NIIl118888
gagQQE0gaea®QQacCcQaaaa

0 o/u
[o] 433y

o] x13S3Y
I ==¥I078

[¢] *1NI
I OMId
I OYII
I %9101

[o} xHYMO1

o) xQYO1I
I xYMd
I NI8ad
I 1Nnos
1 dNIS

(] *180

[o} x080
1 L-¥S

o] 2-08av
I L-0V

oI ¢si-880

o1 L-084
I 1-00Q

[o] L-0Ia

*1S0

o/u

%080

*xHMOI

£vY

(44

v

1nos

20A

dN1S

NISAd

xdMd

%9101

s18a

vi80

€180

2i8a

PALMTECH

$100 HARDBOARD

0000
4567

170 AD

Suggested parts layout for HARDBOARD.

in a connector / positive in a polarized cap / common in a resistor SIP
ire with soldered connections.

pin t
Wide l1ines denotes copper strip or heavy gauge w

Signal lines are not shown.

Square pads denotes

5V 1A regulator

3-pin
7812 or LM340T12 3-pin 12V 1A regulator (or 1.5A)

8xtk SIP resistor pack, or 8 discrete 1k resistors each

7805 or LM340T5

PT S100IDE

U1
u2
U3
RP1-2
R1

Parts list

4700hm

R2

10k

10uF tantalum

C3-4

22-47uF electrolyte
4.7-6.8uF tantalum

Ci-2

0.1uF ceramic monolithic

c8-15

C5-7

27

on

Center Fold

The Computer Journal / #69

Programming information

Board address pins S4-S7 set the board’s 16 byte /O space.
The register table shows all registers valid with an IDE drive
and the optional FDC chip attached. There is some internal
address remapping for the FDC that takes place on the IDE10G
chip AB2 line. Numbers in brackets are the physical addresses
sent to the FDC. Register address X7 and X3 addresses the
same register - when read, bit 7 comes from the FDC and
reflects the READY or DISK CHANGED line, while bits 0-6
comes from the IDE and reflects the complement of the cur-
rently selected drive, head number and write gate. Writing to
either address sets the FDC data rate (250/300/500/1000 kbps).

The PT IDE100 has an on-chip interrupt register at X4 so that
a single S100 interrupt can service both FDC and IDE.

Data is processed in the same fashion as the old Western
Digital floppy controller chips. Writing to address XC through
XF clears an internal data register and counter. The IDE drive
requires that you write a command to address XF to start data
transfer, and that is sufficient for the PT IDE100 chip. There
is only one restriction when writing 16-bit data to sector buffer
XF: You must write an even number of data bytes. The last odd
byte will be lost if not followed by a second “even” byte. But,
you can read an odd number of bytes from the buffer, for a
partial sector read.

Data is written and read in the order MSB (most significant
byte) first, then LSB (least significant byte). For example,
reading the second word after an IDENTIFY command for the
number of cylinders in the drive, you will read, say, 03, then
D4. The correct sequence of these is 03D4 hex, or 980 decimal.
However, the IBM PC stores data LSB first, then MSB. If you
read a drive written on an IBM PC, the DATA contained in the

sectors will be “flipped”, byte for byte.

The PT IDE100 does not support the IDE “IOCHRDY” line,
a wait signal to stop the CPU. CAM ATA set aside IDE pin 27
for it and declared it optional. Seagate specifies this pin as
RESERVED. Some old drives, such as Conners, use pin 21 for
IOCHRDY, some use 27, some both, some neither.

Performance and timing

The PT IDE100 adds a 50ns delay from PDBIN valid to data
valid. Add to that the drive’s access time for total read access.
Measured time for a 10MHZ HD64180 (Z180 like processor)
and a Seagate ST351 40 MByte drive was 175 ns from address
valid at the S-100 bus to data available at the bus. Write delays
are similar. Measured from address valid on the bus to data and
IOWR®* active at the drive was 140ns. As Seagate specifies
40ns data hold time, total write time was 180 ns.

The one timing constraint is that I016* {:¢m the drive must be
valid before PDBIN or PWR* is asserted by the S-100 CPU
card. Normally there is ample time for this, and any problem
is unlikely unless the CPU is very fast and the drive is very

28 Center Fold Section

slow. If in doubt, add 28 ns to the drive’s max address valid to
1016* delay.

Costs (written by Herb Johnson). (You are shortly going to see
why the costs of this project discouraged me.)

Cost of the PT IDE100 chip will be $40.00 US, plus $5 for
shipping from Australia. This price may shift due to fluctua-
tions in both the Australian dollar and the U.S. dollar. A
typical PLCC solder-tail socket is manufactured by Aries Elec-
tronics as part 68-535-10: Digi-Key carries this as A419-ND
for $2.43 each. You’ll need a PLCC extraction tool to remove
the PLCC chip: a screwdriver will break the socket. Digikey
carries a tool from OK as a “universal PLCC extraction tool”,
number K293-ND, for $19.75. The 74HCT520 is not in the
DigiKey catalog, but the 74HCT688 is for $1.07. Of course,
you’ll need resistors, caps, IC sockets, etc.

I did not see S-100 prototype cards in the DigiKey catalog.
These are S-100 boards that are all drilled out with tenth-inch
holes, and a gold-plated edge connector with pads to each pin
for soldering. Vector still makes them as part number 8804
(with ground/power busses) or 8801-6 (blank). My Newark
catalog shows these priced at $43.21 (8804) and $57.57 (8801-
6)! 1 have several new 8804 cards that I’d sell for $30 each.
You may want to shop around: old electronics parts stores
probably have these hanging around. Ask DigiKey if they will
special-order it.

I had hoped to offer a pre-etched and drilled printed circuit
board for this project. However, the one disadvantage of S-100
cards - their large size, originally a plus for 1980-class technol-
ogy - stood as the biggest obstacle. For a run of several cards,
just based on the SIZE of the card, I have been quoted about
$45 to $60 each, depending on methods used. And, some of
those quotes do NOT include plating the “fingers”, or edge
connector!

One way or another, you can see this project will be over $100
in parts and tools. Nonetheless, I will act as Palmtech’s “dis-
tributor” for chips and information. Palmtech is using a ver-
sion of this chip in one of their products, so they will remain

interested in its S-100 use. Claude regularly uses S-100 for

prototyping! For our overseas readers, I'll also include Claude’s
address and phone.

Herbert R Johnson

CN 5256 #105

Princeton NJ 08543

(609) 771-1503

Internet hjohnson@pluto.njcc.com

Claude Palm, Palmtech

cnr Moonah & Willis Sts.
Boulia, QLD. 4829 AUSTRALIA
voice 077-463-109

(no net address)

fax 077-463-198

The Computer Journal / #69

Mr. Kaypro

By Charles B. Stafford

Personality decoder board Part 2, for
All DSDD CP/M Kaypros except K-
4x, and Robie

WHEREIN we shall complete the con-
struction project started two issues ago,
and install it, thereby completing yet
one more step in the transmogrification
of Darth Vader’s lunch box.

For those among you who have just joined
us, (and those who, like me, only have a
64k memory) we started this project two
issues back, by etching a printed circuit
board using copier toner for photo-re-
sist, and collecting the rest of the neces-
sary parts. We also discussed a second
option of using a commercially available
prototype circuit board. The schematic
diagram from which we are working
was also published. We did not however
get into the theory of operation. We shall
remedy that oversight now.

THEORY of OPERATION

The circuitry on the Personality Decoder
board is divided into three distinct func-
tions; The Personality part dealing with
telling the BIOS how many and what
variety of drives are installed, the actual
Decoder part that separates the “drive
select” signals and routes them to the
proper drive, and a timing circuit that
allows a “fast step” option for those drives
that can handle it.

PERSONALITY

The 8 position dip switch, 4.7k ohm
resister pack, and the 74LS151, IC2,
comprise the Personality section. When
one of the switch sections is closed it
pulls the corresponding pin of IC2 low.
Various combinations of pins “pulled
low” result in a discrete number being

The Computer Journal / #69

transmitted back to the BIOS via the
“read” line from pin 6. When a drive is
selected for reading or writing, the
TurboBios interprets the number returned
on the ready line to determine whether
or not the drive is installed, and what
type it is.

DRIVE SELECT

The decoding is handled by IC3, the
7445. It takes the inputs from the drive
A and drive B lines, combined with
“motor on” signal and transmits a signal
on pins 5,6,7,0r 9 which are routed to
the four select lines on floppy drive cable
via connector J2. The TurboBios desig-
nates four drive select signals on two
lines by using the “both on” and “both
off” states as well as “A only on” and “B
only on” and IC3 figures out what it
really means.

NOTE: If this project is intended for a
K-10 You should not install the DRV B
select line between J 1 pin 12 and IC3.
The connection and pull-up resistor be-
tween IC2 and IC3 should be installed
however. The reason is that the BDOS
for the K-10 uses the DRV B select line
is used to access the hard-drive.

After installation the floppy drives will
the first and third logical drives and the
dip switch should reflect this.

A FASTSEEK option is included for
those floppy disk drives that are capable
of stepping faster than 6ms per track.
Use of the FAST SEEK option (FSO)
can lead to significant speed improve-
ments and noise reduction when used
with some drives. For those who are
curious, it’s the series capacitor, reduc-
ing the time constant that does the trick.
THIS OPTION ONLY WORKS WITH

THE TURBOROM. It is NOT compat-
ible with any other ROM including the
original Kaypro ROM, NOR is it com-
patible with any software which directly
accesses the floppy disk controller, such
as Uniform, Media Master, or Fastback.
To use the FSO and these programs on
the same computer, you must use a single
pole double throw toggle switch as de-
scribed in note 6, Section E.6. page E-7,
of the TurboRom Manual.

SIDE SELECT

The schematic also shows a “side select”
line for K-11/83 only. This was included
in the design for those who had not yet
done the II to 4 upgrade yet, or who were
doing it in conjunction with the installa-
tion of the Personality Decoder board.
The K-II/83 mother-board did not in-
clude a trace to pin 32 of the floppy
connector, and this is a relatively pain-
less way to do it. It can be included or
not at your discretion.

ON TO CONSTRUCTION: LAYOUT

For those of you who etched the custom
circuit board, layout is easy, just put the
proper component in the holes as la-
beled on the circuit board, and rejoin us
a few paragraphs later.

This stage can make assembly very easy
or more intricate, depending on your
own proclivitics. There are several
choices, ranging from “let’s just get this
thing together as painlessly as possible”
to “WOW, how did you do that?” Ob-
serve Figure 1. This is a representation
of the “top” (non-solder) side of the
Syntax PC-462905 Uni-Board mentioned
in the first half of this project.

Each group of three holes in each row is

29

in one solder pad, so three leads can be
connected by putting one in each hole
and soldering it on the back side. This
will make life a great deal easier (as I
learned from an HCW [HIGHLY CER-
TIFIED WIZARDY]). There are also two
“busses”, each consisting of half the
perimeter holes and lines of holes be-
tween the three hole pads, also making
life a little easier. The holes on the board
outside the boundaries of the drawing
were omitted, because we don’t need
them. Now, the choices, the bus on the
top and right sides will be the “ground”
bus, and the bus on the left and bottom
sides will be the “power” bus. For ease of
construction, the “output” header, J2,
will be placed so that one row of pins is
in the ground bus, and the other row is
in the first (left-most) column of “three”s.
This is convenient because, checking the
schematic diagram, all the even-num-
bered pins must be grounded.

J1 and the “dip” switch will be placed
using the same consideration. The other
sockets are 4-holes wide, so if we place
them over the center line of the three
hole columns we lose one hole each pad,
but, if we place them so as to straddle the
ground and power busses, we won’t use
up any more holes than necessary, mak-
ing wiring easier. Figure 2 shows the
result as seen from the top. J1 is the
final area where choices are important.
Perhaps the most elegant solution is to
put J1 on the bottom side of the circuit
board, so that the finished board will just
plug onto the motherboard, and the ex-
isting cable will plug onto J2. The diffi-
culty encountered here is “side-solder-
ing” a connector not intended for side-
soldering. It can be done, by pulling the
pins far enough out of the connector
shell so they can be soldered, but so that
the plastic shell will still maintain the
alignment of the pins, and by using a
block under the board to keep the pins
from falling all the way into the holes
until they are soldered, side-soldering
the pins, and then pushing the plastic
shell back down on the pins.

A second option is to just put J1 on top
of the board, solder it on the bottom and
plug the finished product onto the mother
board upside down. The disadvantage
here is that one must remove the person-

30

ality-decoder board completely to
reconfigure it. The third option and per-
haps most reasonable compromise would
be to put another header at the J1 loca-
tion and use a cable to connect it to the
mother-board. The caveat here is to make
sure that J1 and J2 are clearly labeled, to
eliminate confusion when doing the fi-
nal installation.

Once you’ve decided on the layout, put
the components in place, invert the board
(you might want to use a folded towel to
put it on, to compensate for component
thickness) and solder the pins at the
diagonal corners of each component.
Soldering only the diagonal pins now
will allow for inspection of the result
and adjustment if necessary (adjusting
one pin is a lot easier than de-soldering
all 14 or 16. When you install the header
at J2 (also at J1 if that’s your choice), if
you use a right angle header as 1 did, just
let the pins barely protrude from the
bottom of the circuit board, so that there
will be enough room to put the plug on
when you’re finished.

With the position of the dip switch shifted
to take advantage of the ground bus, one
column of holes is covered up. Installa-
tion of the strip resistor on the bottom of
the circuit board using these holes (with
the “dot” end toward the bottom [power
bus end] of the board) will free up the
last holes in the pads for wiring, so that
there will only be one lead in each hole.

So endeth the layout portion of the
project.

WIRING

Before we really get too involved, you
might want to make at least two copies
of the schematic diagram, and two of
Figure 3. We'll use one of each during
the wiring phase, and another during
the checking phase. Some colored pen-
cils (not all red, but at least three differ-
ent colors) and a highlighter will also
come in handy.

What might at first have seemed to be a
real chore, has been greatly simplified
by the choices we made during layout.
For instance, all the ground connections
toJ1, and J2, have alrecady been made, as

have the connections from the resistors
to the dip switch.

So here we go! First things first, the
power and ground connections to the
three ICs. Following the table on the
schematic and remembering that IC pins
are numbered counter-clockwise from the
notch when viewed from the TOP, make,
install and solder jumpers from the power
and ground busses to the appropriate
pins of the IC sockets. All wiring canbe
done on the top of the circuit board, but
a more elegant solution here is to use
bare wire jumpers on the bottom of the
board from the appropriate pin to the
bus, which is right next door, so to speak.
While we are in the neighborhood, a
similar jumper from the powerbus to the
resistor would be appropriate. See Fig-
ure 3.

SOLDERING

Perhaps a short refresher on soldering is
appropriate here. (All you HCWs can
take a short nap now) For the rest of us,
as a general rule, the smaller the solder-
ing iron the better, and Radio Shack
varieties work as well as the higher priced
spread. Thermostatically controlled, vari-
able temperature irons are very nice for
commercial applications, but not neces-
sary for us AWs (Apprentice Wizards).
My favorite weapon is a 15 watt refugee
from Radio Shack, which has a very fine
tip, and is light enough to be very handy.
It will probably not last more than 5
years, but I'll be ready for a change by
then anyway, and it was very inexpen-
sive. :

Eutectic solder (63/37) works the best,
but 60/40 is an acceptable substitute.
Rosin flux is the only way to go and a
small can will last almost forever. Heat
up the iron, tin (or re-tin) the tip (dip the
tip in the flux, cover it with solder and
wipe it off with an old piece of damp
towel) and we’re ready to press-on.

Hold the tip against the lead or pin pro-
truding from the solder pad, count three
and apply the solder. Not much, just
enough to fill the hole, remove the iron
and proceed to the next one.

The Computer Journal / #69

The numbering of the pins of J1 depends
on whether you used a header, or a socket.
Headers are numbered from left to right
with odd pins on the top and even on the
bottom. Sockets on the other hand are
numbered from right to left, again with
the odd pins on the top, and the even
pins on the bottom.

Starting with pin 10 of J1, run a wire to
pin 13 of IC3. Run another wire from
the remaining hole at pin 13 of IC3 to
pin 11 of IC2. Run a 4.7k ohm resis-
tor from the remaining hole at pin 11
of IC2 to the power bus. See Figure
4. Grab your highlighter, and one of
the duplicate schematics and high-
light the circuit you just wired. It
should be labeled DRV A on the sche-
matic. Now start at pin 12 of J1 and
using the same procedure run the
DRV B select line, and all the rest of
the circuits as shown on the sche-
matic, highlighting each circuit as
you put it in.

A SMALL HINT

Before you start running wires, you might
want to use one of your duplicate copies
of Figure 3 and your colored pencils to
decide how to route the wires, and where
to put the resistors. The way we ran the
DRV A line is not the way that’s shown
on the schematic, but electrically they’re
the same. We could have put the resis-
tors from the extra hole at pins 10 & 12
at J1 to the nearest power buss (See
Figure 4) and it would still be electri-
cally the same. The reason we can get
away with it is that we’re working at
relatively low frequencies and with rela-
tively short conductor paths.

TO CONTINUE

When you get to the SIDE SEL,
READY, VCC, and FAST SEEK lines,
Radio Shack sells a set of “Micro<clip
test leads” which are very inexpensive
and which do the job ideally. They come
as a pair, and are about 12 inches long.
Cut them in half and you’ll have the four
leads you need, except that two will be
black, and two will be red. Pieces of
masking tape or spots of plastic model
paint on the clips will handle the label-
ing.

The Computer Journal / #69

When the schematic diagram is com-
pletely highlighted, you are finished with
the wiring phase and it’s time for IN-
SPECTION.

INSPECTION

This is our last line of defense against
catastrophes. Actually, it isn’t all that
bad, We’re only working with 5 volts,
and even inverted polarity won’t smoke
anything. That isn’t always true, but with
these components, we’'re lucky.

Using the second duplicate schematic as
a reference, check each conductor’s end-
points on the circuit board and as you
find them correct, highlight the conduc-
tor on the schematic diagram. This may
seem redundant, but it’s the only way to
be sure.

TESTING

The easiest and scariest part, will it, or
won’t it? Nothing left to do but take the
bull by the horns. Install the board as
you planned either by plugging it onto
the motherboard, or using an auxiliary
cable (don’t forget to insulate the bot-
tom) and plug the 34 conductor ribbon
drive cable onto it. Set the switches ap-
propriately, and now it’s time to deal
with the clip leads.

The READY line

Find and carefully remove the floppy
controller. It will be a 40 pin flat pack
IC, designated as U-82 on ’83 models,
U-44 on ’84 models, and U-74 on K-10
*83 models. Carefully bend out pin 32 to
about a 45 degree angle and reinsert the
floppy controller into its socket match-
ing the notch in the IC with the notch in
the socket. Connect the READY
microclip to pin 32, the one you just bent
out.

vCC

The Personality/Decoder board must be
supplied with +5 volt DC power. This is
done by connecting the VCC microclip
to pin 14 of U-86 on '83 models, pin 14
of U-72 on '84 models, or pin 16 of U-
32 on K-10 '83 models.

If you have installed 96tpi drives, you
can install the FAST SEEK option. It is
a two step process, first connect the FAST
SEEK microclip to pin 22 of the floppy
controller by removing the IC, bending
out the pin (22) and reinserting the IC
into its socket (see “The READY Line”
above), and second, use TURBOCFG to
specify the appropriate step rate. See
your TurboRom manual Chapter 4 for
particulars.

SIDE SELECT

If this installation is part of a K-II to K-
IV upgrade project, AND the K-II has
not been modified to use double-sided
drives, cut the conductor identified as J3
on the schematic and connect the SIDE
SELECT microclip to pin 13 of U-72.

If Your Computer is already using
double-sided drives, remove this
microclip lead to prevent inadvertent
shorts.

NOW

Power up the computer, the power LED
will light, the disk drive should run, and
the Drive A LED should light.

WHAT TO DO IF IT DOESN’T

First turn off the power and disconnect
the power cord, then do a physical in-
spection, making sure that the right ICs
are in the proper sockets, and none of
the pins got folded under. Second, re-
inspect the wiring, using the schematic,
paying close attention to any solder that
might have sneaked over onto a forbid-
den solder pad creating an unplanned
short-circuit. Third, unplug the ribbon
cable to the drives and check that the
select line for FD1 is high (5.0 V) ini-
tially but goes low (0) when the com-
puter tries to boot. If it does, but the
computer still won’t boot, recheck the
dip switch to make sure that sw2 is set
for the drive you have as DRV A. The
next suspect is the ribbon cable itself.

As a last resort you can reach me week-
ends and evenings at (916)483-0312,
or CompuServe 73664,2470, or
Internet 73664.2470@cis. GOOD
LUCK AND HAPPY SOLDERING)

31

gl

.f:-iv«
fr I

|

Jt

Mowmnes vadant.

$
" wy
> SR
\ |
o) TP 0000000000000 0Q00 ol56000 50060 004000000000
o _%%ggggggpooooooo 0000 o600 6003000000000
0 00000000000000000CI0 0 0000000000000 000000000
o) 000 0000000000000000000I0 ! oloocooocoooc00000C0 [o] 000 lo]
00 000 00Q[0| & 0j000000 000000 0000
00000000000000 00000000000 | 4™ 01000000 L) 0000000000
QODQOROO 0000000000 olo (Xe} 0 000000000000
ORRO00QOOOJOOOP 0000000000000 000 o ol 000000000 0O0000000000000000
o QO) 00000000 0|0 00P000000@OOJUO00000@O00000000I0
Q0000 029 900 8888888888 0[0b 000000800 00000 #H0000000000
olo 00 0000000000
0100000000000000000000000000000I0 000000000000 oooooooooooooooooo
0000 0000000000000 olo ol 00 00000000000000000l0
0B8888882220999999¢ SOEETECet e caua0000ca000000000
. g
00 3333838 353E833330 7] B ol oToteL ot STote S TeToIoTL) ST T T I T Lo ¢
0RO0000OPO00O00000I0 o800 880000p00000dP000000000[0
00000000000 000000000[0 | TN 0000000000000 560000000000 | §
090000 0000000000000 |HN™ o 0/000000000000/000000000000000000 | 3
00000000000000000000000000/0 3 Ol600000000000000000000000000000 | It
0000000000000000000000000000/0] 0/00000000000000060000000000000(0
0000090000000000090000000000/0 w 0/000000000000/06000000000000000i0
R R e R 2R R AR Ry R e 0000000009 0[00000000000000Q000000000000000
0900000000000009000000000000)0 B e 8eas600666000000
00000000000000000000000000)0 005666000600m00860000000000C0(0
IR800000000 0900000000008 000003° 0000000000000900000000000000000
000000000000000000000000000010 Ol000000000000$00000006000000000
990000000000000028922999000090 31666660000060090000000060000000/0
0009000000099000900900096090599 0[00000000000080000000000000000[0
0060 B00000000000000000000000000 S35 680658600006600656666600
Fe
.)E'-
k4
8
%
-
0000000000000000000000000C00[0 000000000000
©00000000000000000000000000|0 0l000006660¢000)0
000000000000000000000000000[0 o
000000000000C00000000000000/0 o
000000000000000000000000000|0 b
0000000000000000000000000000[0 0000000000000
0l00000000000000000000000000000j0 O CO0000 000 ORFB 00000 olo
0|oooooc 00000000000000000000000 @;mv 0
0000000000000000000000000000G000 00 o
0[0000000060000000000000000000C0(0 | § oo 00000003 o
0/0000000000000000000000000000010 11§ 5
oooooooooooooooogoggggggggooo o
0 ool ! o
00000000000000000000000000000 |, ¢ 0l00000000000000000000[0
000000000000000000000000000 |\¥ 580 0000000000
00 ”:DooooooocooooooooooooJ 80:%8800030 o 000000J000000600000
000000000000000000000000000000[0] [0 00p00000§I0000000000j0
L0[00000000000000000000000000000/0 0[00TTT000C000p00000800000000000 | ©
ooooooooooooooooooooooooooooooo 0000000000000 00000000000 | ¢
0 0 0000000000000000000[0 -~y 0l000000000000000000000000000000| §
000 OOOOOOOOOOOOOOOOOOOOOOOOO ,‘ 0l000000Q00000000Q000C00000000000J0| ¥
oSessssaacetossoconnsoons) | gBascasoseesasssaseaseasssasone v
000000000000Q00 000000 3 0000
50000000000000000000000000 \g OC000QQQOQooooooooooooooooooooo
5000000000000000000000000J0 Q0000000000300 00000000000000j0
6000000000000000000000000000[0 Q00000000000000Q00000000C0000
00000000000C0000000000000000[0 OOOOOOOOOOOOOOO-()B 0000000000000
00Q0000000000000000000000000|0 0[00000000000000000000000000000Q|0
00000000000000000000000000000 O[00000000000000000000000Q000000I0
0000000000000000000000000000[0 00000000000 00000000000C0000000I0
000000000000000000000 0/00000000000000000000000000000/0
50000000000000000000000000000 000000000000 0000000000000000000

The Computer Journal / #69

Real Computing

By Rick Rodman

Tiny-TCP, the RS-485 network, Linux
1.1, and FreeBSD

Tiny-TCP

I’m still hard at work porting TinyTCP
to the Xerox 820, using the Eco-C com-
piler for the Z-80, as I mentioned last
time. One problem I ran into was the 6-
character significance limit on the CP/
M side, with the assembler and the com-
piler both. I hadn’t worked with this
limitation in a long time. This has meant
that many names have had to be changed
throughout the source, so the source files
are changing rapidly. I had hoped to be
able to substitute only one driver, XSIO,
for the CASYNCMS serial driver. This
driver uses interrupts both for sending
and receiving.

I do intend to port this package to my
NS32 system, the CompuPro CPU-
32016-based machine running Bare
Metal, once it is working on the Xerox.
Since that’s an S-100 system, I can add
lots of serial ports to it with no difficulty.
As you may recall, the NS32 CPUs, like
Morotola-family CPUs, have no sepa-
rate I/O space; the S-100 I/O space is
mapped into the memory region FE0000
to FEFFFF hex. For most S-100 boards,
only the low byte of the address is
checked.

One reader suggested that we consider
parallel-port Ethernet gizmos rather than
using SLIP links. Linux includes driv-
ers for some of these gizmos, which we
could easily modify and use, and the
Clarkson University folks have drivers
for some of them as well. I'd have no
problem lashing one of them to a PIO,
either in the Xerox or an S-100 ma-
chine, but the problem is that these
gizmos are quite expensive.

The Computer Journal / #69

I'd like to add that one of our rules
regarding this package is that it must
not be allowed to become big and com-
plicated. If we wanted something big
and complicated, we would have started
with KA9Q or something like that.
Nevertheless, at some point, we could
investigate UDP (User Datagram Proto-
col), a connectionless protocol which sits
atop IP. There is a Trivial FTP (TFTP)
which rides on top of UDP rather than
TCP, and NFS rides on top of UDP also.

RS-485 netwqu

Tilmann Reh sent me a TIFF file of his
proposed RS-485 bus interface, which
should be displayed alongside. Please
consider this schematic.

On the RS-232 end, two optoisolators
(K1 and K2) are used to isolate the com-
puter from noise spikes induced into the
network cable or various power circuits.
Data out from the computer (TXD) drives
the LED of the lower optoisolator (K2)
for data going out onto the network;
since the TXD line rests at logic 1 (-
12V), the LED is normally off. Data
coming back in drives the upper isolator
(K1). The RXD line is pulled down
most of the time, swinging between
ground and +5. This should work in
most cases; in other cases we may need
to swing negative.

The collector of the optoisolator K1 is
powered by DTR or RTS, which must be
programmed to logic 0, causing it to
swing positive. Is this logic true or
false? 1 think it’s logic true, but there
are so many inversions I’m not sure.

When data is sent, a monostable is trig-
gered, which is labelled IC1 and should
be a 74HCT123 (not -132). The unused

inputs mentioned are pins 5, 6, 7, 9, 10,
and 11. This device is triggered by the
start bits of the data. As mentioned
previously, all we need to do from the
software standpoint is to send an FF hex
byte before the data. The software has to
listen before sending data to make sure
the bus is idle, and examine received
data as it is sent to make sure there was
no collision.

Sending and receiving on the RS-485
bus is accomplished by the LTC-48S5,
IC2. Tilmann comments that the 75176
is cheaper.

The actual bus is a 4-pin connector. I
would suggest using modular telephone
cable, using RJ-11 (6 pin with 4 pins
wired). However, because of the pro-
pensity of these cables to be sometimes
twisted, sometimes not, we might want
to think about this a little first. (Are
modular telephone connectors used in
other countries?)

At one end of the bus would be a wall
transformer supplying +5 volt power to
the devices on the bus side. [think a
terminating resistor is required as well.

Digi-Key lists the 6N139 at $1.63, the
74HCT123 at $0.80, and the LTC485 at
$2.25; throwing in a couple of dollars
for resistors, caps and diodes, the total
cost per node would be about $8. At
levels such as these, labor and packag-
ing costs greatly outweigh components
costs. Anyone interested in making a
small PCB?

Linux 1.1
Plug and Play Linux, from Yggdrasil

and available less expensively from other
dealers, is the best Unix for PCs avail-

33

able, and one of the best operating sys-
tems available overall. When you con-
sider the price, there’s no comparison at
all.

The first thing you notice in this pack-
age is the excellent manual. This manual
goes through the installation step-by-
step, up to a certain point. All the bugs
in the version 0.99 have been cleaned
up, and the on-screen instructions greatly
improved. There is now a “custom”
installation option which requires around
35 megabytes of hard drive, a nice fit
between the 2 megabyte CD-dependent
and the 600 megabyte source-type in-
stallation.

I have a Dell machine with a PS/2 bus
mouse, an ATI 8514-clone video board,
a 500 MB IDE hard drive which I want
left alone, and a 128-megabyte remov-
able optical (MO erasable) drive. I had
no problem at all installing Linux on the
erasable optical (I had no problem with
the earlier version, either). Everything
went extemely smoothly.

There were two gotchas. As in version
0.99, I could not get the bus mouse to
work at all. While the old manual had
several pages of mostly unhelpful dis-
cussion about different mice, the new
manual says nothing about mice at all.
Plug a Microsoft-compatible serial mouse
into one of your COM ports, and that’ll
work.

The other gotcha was the network card.
As in version 0.99, again, the NE-2000
driver will only support interrupt 12.
My board can’t be set to interrupt 12; 1
can choose from 3, 4, 5, or 2 (9). Of
these, the only usable one is 5. Unfortu-
nately, the Linux driver doesn’t allow
me to select the interrupt.

Obviously, having source to everything,
I could modify the drivers and fix both
of these problems (assuming I can find
out where the bus mouse is located, which
may not be easy given the typically sparse
documentation on PC hardware).

You're supposed to be able to use an

SMC (Western Digital) Ethernet card; I

have a couple of these, but they’re in use
in other machines at the moment. So, I

34

wasn’t able to test the networking. Linux
supports 2 SLIP channels, so it could be
used as a router for our TinyTCP net-
work.

The X Window package provided is not
just the basic X stuff, but includes a
window manager called “fvwm” which
looks very nice, X-window-compatible
editors and lots of utilities, and some
games - such as the beautiful and addic-
tive Pool, which accurately simulates a
pool table and has consumed more of my
time than I care to mention.

Most outstanding is a “control-panel”
program which allows you to interac-
tively configure network addresses, in-
stall additional software to the hard drive,
and make various changes to the system.

All the Gnu software is here, including
Gnu EMACS and GCC. Also, there is a
multimedia package called “Andrew”
which looks very interesting; it’s sup-
posed to be some kind of hypertext sys-
tem with photos, movies, sound, and so
on. By the way, several sound cards are
supported; the speaker is used if there’s
no sound card.

There’s a tremendous amount to explore
here: an Image Magic viewer, the MPEG
player, lots of sample X window code,
PBM, Ghostscript... and source to every-
thing.

FreeBSD on the PC

I've also tried another PC Unix supplied
on CD-ROM, FreeBSD from Walnut
Creek CD-ROM. While similar in con-
cept to Plug-and-Play Linux, this is a
real BSD Unix kernel which comes with
many of the same tools and X Window,
and again, source for everything. There
is no printed manual; all you get is online
documentation.

The CD has what are called “Rock Ridge
extensions”. By this technique, if the
CD is loaded on a Unix machine, the
machine sees Unix-style mixed-case
longer filenames; on a DOS machine, it
sees DOS-style uppercase-only 8.3
filenames. This makes this CD useful, if
not for anything else, as a nice source

archive of Unix tools which can be
recompiled on the Sun.

FreeBSD had no problem with my
NE2000 on interrupt 5. However, it re-
fused to recognize the removable optical
drive and, therefore, tried to install itself
on the CD-ROM, which, of course, didn’t
work. There’s little you can control
during the installation process to say,
‘Hey, you’re making a mistake here’, so
that’s as far as I could get.

Magneto-optical drives have been around
for quite some time, so it’s rather hard
for me to believe that any operating sys-
tem written since 1985 or so would have
any trouble with them. Someday, I sup-
pose, I'll get around to connecting up a
magnetic hard drive to try out FreeBSD.
At this point, I can’t imagine it having
much to recommend it over Linux.

Those of you who don’t really want to
get involved with modifying the operat-
ing system may want to consider Mark
Williams® new version of Coherent,
which is available with X Window. It
doesn’t come with any source, but that
may be alright for you. You don’t need
a CD-ROM - in these days of 20-dis-
kette-plus installations, it installs from
just 5 diskettes. I've mentioned before
that Coherent is a mature, stable system
which can easily be used in place of
Unix in many applications.

For those of you who want to use X but
don’t want to have to learn Unix as well,
the package for you may be Quarterdeck’s
Desqview/X. I’ve been told it now comes
with a TCP/IP stack and a GCC-based
developer’s kit, so there’s nothing else
you need to buy.

Next time

Don’t you hate it when columnists whine
about having too much to say, so you'll
have to wait for the next issue for that
super-interesting topic you really wanted
to read about? Er - well, owing to space
considerations, the matter of CD-Record-
able will have to wait til next issue.

The Computer Journal / #69

Where to call or write

Real Computing BBS or Fax: +1 703 330 9049
E-mail; rickr@aib.com
Mail: 8329 Ivy Glen Court, Manassas VA 22110

Digi-Key 1-800-DIGIKEY (1-800-344-4539)
701 Brooks Ave. South, POB 677, Thief River Falls MN
56701-0677

Plug-and-Play Linux 1.1 - $39.95
Yggdrasil Computing, Inc. +1 510 526 7531
P.O. Box 8418, Berkeley CA 94707-8418

‘Also available from:
Just Computers! +1 707 769 1648
P.O. Box 751414, Petaluma CA 94975-1414

FreeBSD $39.95
Walnut Creck CD-ROM +1 510 674 0783
1547 Palos Verdes Mall Suite 260, Walnut Creck CA 94596

Coherent $99.95, with X Window][s] $149.95
Mark Williams Company +1 800 636 6700 or +1 708 291 6700
60 Revere Drive, Northbrook IL 60062

Desqview/X
Quarterdeck Office Systems
150 Pico Boulevard, Santa Monica CA 90405-9852

(LINUX $2995)
Yggdrasil COROM

Plug-and-Play * New Release
X Window System
TCPAP, NFS and other protocols
GNU C, C++, Other Languages
Taylor UUCP, kermit, ZModem
Binaries and Source Code
Supports Most COROM Diives

Just Computers!
(707) 769-1648
FAX: (707) 765-2447
P.O. Box 751414
Petaluma, CA 94975-1414
linux@justcomp.com
Visa/MasterCard

For auto-intormation, send e-mail to
info@justcomp.com

__Include word “help® in message _J

[SOLATED INTERFACE £5-232 To RS-v8s

T. Reh 940343

RS-231
N
Pﬂl
Y4y
IR o RTS LTe w2S (1ede)
(,n,. whve!) 24 6NK:33 SNYS93C (cheaper)
"
'*—l“ - 4xs [n:' |
RXD : ¢ : | RE s 2 °
R2 3 - ey ¢
ILC‘l yIK 5 e y &y 3 Ts45m 3 :E N: s
_F‘/" -] ST ,
faND) I'C"E“'r‘ JLiHle Ned'
(oy s ©5 1o ¢N2
S? »?2 2 vee |2 Rad I T PR
R3 4148 #§ g b WeTa32 af
Tx) —A} 1 K it w14
3K3 H g i
S—) /i
6N 133
K2

add debhckting caph Abu 1 4000

conmtcd wnured ipputls of HET AN with Grownd!

Cine Ternnabom ot bodl tods oL Chlened Bar calle :

The Computer Journal / #69

ot R5-YPS Tomarscorver !

136

A—{"}—13

Al Trusceiver cicemitt pouted Wit cenbml suyly via Li#feNeé vee I:.e(fV)~

35

MOVING FORTH

by Brad Rodriguez

Part 6: the Z80 high-level kernel

ERRATA

There are two goofs in the CAMEL80.AZM file I presented in
TCH67. The minor goof is that the name length specified in
the HEAD macro for the Forth word > was incorrectly typed
as 2 instead of 1.

The major goof results from a subtlety of CP/M console 1/0.
KEY must not echo the typed character, and so used BDOS
function 6. KEY? used BDOS function 11 to test non-destruc-
tively for the presence of a keypress. Unfortunately, BDOS
function 6 does not “clear” the keypress detected by function
11! I have now rewritten KEY? to use BDOS function 6 (see
Listing 1). Since this is a “destructive” test, I had to add logic
to save the “consumed” keypress and return it when KEY is
nextused. This new logic can be used whenever your hardware
(or operating system) provides only a destructive test-for-
keypress.

HIGH LEVEL DEFINITIONS

In the last installment I did not expound greatly on the source
code. Each Forth “primitive” performs a miniscule, sharply-
defined function. It was almost all Z80 assembler code, and if
it wasn’t obvious why a particular word was included, I hope
it was clear what each word did.

In this installment I have no such luxury: I will present the
high level definitions which embody the elegant (and tortuous)
logic of the Forth language. Entire books have been written
[1,2,3] describing Forth kernels, and if you want complete
mastery I highly recommend you buy one of them. For TCJ/I'll
limit myself to some of the key words of the compiler and
interpreter, given in Listing 2.

TEXT INTERPRETER OPERATION

The text or “outer” interpreter is the Forth code which accepts
input from the keyboard and performs the desired Forth opera-
tions. (This is distinct from the address or “inner” interpreter,
NEXT, which executes compiled threaded code.) The best way
to understand it is to work through the startup of the Forth
system.

36

1. The CP/M entry point (see listing in previous installment)
determines the top of available memory, set the stack pointers
(PSP,RSP) and user pointer (UP), establishing the memory
map shown in Figure 1. It then sets the “inner” interpreter
pointer (IP) to execute the Forth word COLD.

2. COLD initializes the user variables from a startup table, and
then does ABORT. (COLD will also attempt to execute a
Forth command from the CP/M command line.)

3. ABORT resets the parameter stack pointer and does QUIT.

4. QUIT resets the return stack pointer, loop stack pointer, and
interpret state, and then begins to interpret Forth commands.
(The name is apt because QUIT can be used to abort an
application and get back to the “top level” of Forth. Unlike
ABORT, QUIT will leave the parameter stack contents alone.)
QUIT is an infinite loop which will ACCEPT a line from the
keyboard, and then INTERPRET it as Forth commands. When
not compiling, QUIT will prompt “ok™ after each line.

5. INTERPRET is an almost verbatim translation of the
algorithm given in section 3.4 of the ANS Forth document. It
parses one space-delimited string from the input, and tries to
FIND the Forth word of that name. If the word is found, it will
be cither executed (if it is an IMMEDIATE word, or if in the
“interpret” state, STATE=0) or compiled into the dictionary (if
in the “compile” state, STATE<>0). If not found, Forth
attempts to convert the string as a number. If successful,
LITERAL will either place it on the parameter stack (if in
“interpret” state) or compile it as an in-line literal value (if in
“compile” state). If not a Forth word and not a valid number,
the string is typed, an error message is displayed, and the
interpreter ABORTSs. This process is repeated, string by
string, until the end of the input line is reached.

THE FORTH DICTIONARY

Whoa! How does the interpreter “find” a Forth word by name?
Answer; Forth keeps a “dictionary” of the names of all Forth
words. Each name is connected in some fashion with the
executable code for the corresponding word.

There are many ways to store a set of strings for searching: a

simple array, a linked list, a multiple linked list, hash table, etc.
Almost all are valid here — all Forth asks is that, if you reuse

The Computer Journal / #69

a name, the latest definition is found when you search the
dictionary.

It’s also possible to have several sets of names (“vocabularies”,
or “wordlists” in the new ANSI jargon). This lets you reuse
a name without losing its previous meaning. For example, you
could have an integer +, a floating-point +, even a + for

. strings...one way to achieve the “operator overloading” so

beloved by the object-oriented community.

Each string may be connected with its executable code by being
physically adjacent in memory — i.e., the name appears in
memory just before the executable code, thus being called the
“head” or “header” of the Forth word. Or the strings may be

"located in a totally different part of memory, and connected

with pointers to executable code (“separate heads™).

You can even have unnamed (“headless”) fragments of Forth
code, if you know you’ll never need to compile or interpret
them. ANSI only requires that the ANS Forth words be
findable.

The design decisions could fill another article. Suffice it to say
that CamelForth uses the simplest scheme: a single linked list,
with the header located just before the executable code. No
vocabularies... although I may add them in a future issue)of
. i

HEADER STRUCTURE (FIGURE 2)

Still more design decisions: what data should be present in the
header, and how should it be stored?

- The minimum data is the name, precedence bit, and pointer

(explicit or implicit) to executable code. For simplicity,
CamelForth stores the name as a “counted string” (one byte of
length, followed by N characters). Early Forth Inc. products
stored a length but only the first three characters, for faster
comparisons (the actual improvement gained is another hot
debate). Fig-Forth compromised, flagging the last character
with MSB high in order to allow either full-length or truncated
names. Other Forths have used packed strings [4], and I
suspect even C-style null-terminated strings have been used.

The “precedence bit” is a flag which indicates if this word has
IMMEDIATE status. IMMEDIATE words are executed even
during compilation, which is how Forth implements compiler
directives and control structres. There are other ways to
distinguish compiler directives — Pygmy Forth [5], for ex-
ample, puts them in a separate vocabulary. But ANS Forth
essentially mandates the use of a precedence bit [6]. Many
Forths store this bit in the “length” byte. I have chosen to put
it in a separate byte, in order to use the “normal” string
operators on word names (e.g. S= within FIND, and TYPE
within WORDS).

If the names are kept in a linked list, there must be a link.
Usually the latest word is at the head of the linked list, and the

The Computer Journal / #69

link points to a previous word. This enforces the ANSI (and
traditional) requirement for redefined words. Charles Curley
[7] has studied the placement of the link field, and found that
the compiler can be made significantly faster if the link field
comes before the name (rather than after, as was done in Fig-
Forth).

Figure 2 shows the structure of the CamelForth word header,
and the Fig-Forth, F83, and Pygmy Forth headers for compari-
son. The “view” vield of F83 and Pygmy is an example of other
useful information which can be stored in the Forth word
header.

Remember: it’s important to distinguish the header from the
“body” (executable part) of the word. They need not be stored
together. The header is only used during compilation and
interpretation, and a “purely executable” Forth application
could dispense with headers entirely. However, headers must
be present — at least for the ANSI word set — for it to be a
legal ANS Forth System.

When “compiling” a Forth system from assembler source code,
you can define macros to build this header (see HEAD and
IMMED in CAMELS80.AZM). In the Forth environment the
header, and the Code Field, is constructed by the word CRE-
ATE.

COMPILER OPERATION

We now know enough to understand the Forth compiler. The
word ¢ starts a new high-level definition, by creating a header
for the word (CREATE), changing its Code Field to “docolon”
(!COLON), and switching to compile state (J). Recall that, in
compile state, every word encountered by the text interpreter is
compiled into the dictionary instead of being executed. This
will continue until the word ; is encountered. Being an
IMMEDIATE word, ; will execute, compiling an EXIT to end
the definition, and then switching back to interpret state (]).

Also, : will HIDE the new word, and ; will REVEAL it (by
setting and clearing the “smudge” bit in the name). This is to
allow a Forth word to be redefined in terms of its “prior self”.
To force a recursive call to the word being defined, use
RECURSE.

Thus we see that there is no distinct Forth “compiler”, in the
same sense that we would speak of a C or Pascal compiler. The
Forth compiler is embodied in the actions of various Forth
words. This makes it easy for you to change or extend the
compiler, but makes it difficult to create a Forth application
without a built-in compiler!

THE DEPENDENCY WORD SET
Most of the remaining high-level words are either a) necessary

to implement the compiler and interpreter, or b) provided
solely for your programming pleasure. But there is one set

37

which deserves special mention: the words I have separated
into the file CAMELS80D.AZM (Listing 3).

One of the goals of the ANSI Forth Standard was to hide CPU
and model dependencies (Direct or Indirect Threaded? 16 or
32 bit?) from the application programmer. Several words were
added to the Standard for this purpose. I have taken this one
step further, attempting to encapsulate these dependencies
-even within the kernel. 1deally, the high-level Forth code in the
file CAMELS80H.AZM should be the same for all CamelForth
targets (although different assemblers will have different syn-
tax).

Differences in cell size and word alignment are managed by
the ANS Forth words ALIGN ALIGNED CELL+ CELLS
CHAR+ CHARS and my own addition, CELL (equivalent to
1 CELLS, but smaller when compiled).

The words COMPILE, !CF ,CF {COLON and ,EXIT hide
peculiarities of the threading model, such as a) how are the
threads represented, and b) how is the Code Field imple-
mented? The value of these words becomes evident when you
look at the differences between the direct-threaded Z80 and the
subroutine-threaded 8051:

word compiles on Z80 compiles on 8051

COMPILE, address LCALL address

ICF CALL address LCALL address

CF ICF & allot 3 bytes ICF & allot 3
bytes

ICOLON . CALL docolon nothing!

JEXIT address of EXIT RET

'(ACF and ,CF are different for indirect-threaded Forths.)

In similar fashion, the words ,BRANCH ,DEST and !DEST
hide the implementation of high-level branch and loop opera-
tors. I have tried to invent — without borrowing from existing
Forths! — the minimal set of operators which can factor out all
the implementation differences. Only time, expert criticism,
and many CamelForths will tell how successful I've been.

So far I have not been successful factoring the differences in
header structure into a similar set of words. The words FIND
and CREATE are so intimately involved with the header
contents that I haven’t yet found suitable subfactors. I have
made a start, with the words NFA>LFA NFA>CFA IMMED?
HIDE REVEAL and the ANS Forth words >BODY IMME-
DIATE. TI'll continue to work on this. Fortunately, it is
practical for the time being to use the identical header structure
on all CamelForth implementations (since they’re all byte-
addressed 16-bit Forths).

38

NEXT TIME...

1 will probably present the 8051 kernel, and talk about how the
Forth compiler and int=rpreter are modified for Harvard archi-
tectures (computers that have logically distinct memories for
Code and Data, like the 8051). For the 8051 I will print the
files CAMELS51 and CAMELS51D, but probably only excerpts
from CAMELS51H, since (except for formatting of the assem-
bler file) the high-level code shouldn’t be different from what
I've presented this issue...and Bill needs the space for other
articles! Don’t worry, the full code will be uploaded to GEnie.

FIGURE 1. 1360 CP/X CAMELPORTE MEMORY AP
assuring CP/M BDOS starts at EDOO hex.

0000
CP/M stuff
0080
Terninal Input Buffer
: {
0100
CanelForth 280 kernel
1700
User definitions
{
) | EBOO reserved
--------------------- | EBO2 >IN
| EBOA BASE
- E00 | EBOS BTATE
User Area EB08 DP
| \ EBOA,EBOC, 'SOURCE
t \ EBOE LATES?
200 \ EB12 LP
: ;
HOLD working buffer
BC28
PAD buffer
|
BC80
Leave stack*
i
t
Return stack
EDOO
CP/M
FFEF

* used during compilation of DO..LOOPs.

The Computer Journal / #69

However, 1 may succumb to demands of Scroungemaster II
builders, and publish the 6809 CamelForth configured for the
Scroungemaster II board. Whichever I do next, I'll do the
other just one installment later.

REFERENCES
1. Derick, Mitch and Baker, Linda, Forth Encyclopedia, Moun-

tain View Press, Route 2 Box 429, La Honda, CA 94020 USA
(1982). Word-by-word description of Fig-Forth.

2. Ting, C. H., Systems Guide to fig-Forth, Offete Enterprises,
1306 South B Street, San Mateo, CA 94402 USA (1981).

3. Ting, C. H., Inside F83, Offete Enterprises (1986).

5. Sergeant, Frank, Pygmy Forth for the IBM PC, version 1.4
(1992). Distributed by the author, available from the Forth
Interest Group (P.O. Box 2154, Oakland CA 94621 USA) or
on GEnie.

6. J. E. Thomas examined this issue thoroughly when convert-
ing Pygmy Forth to an ANSI Forth. No matter what tricks you
play with relinking words, strict ANSI compliance is violated.
A regrettable decision on the part of the ANS Forth team.

7. In private communication.
The source code for Z80 CamelForth is now available on GEnie

as CAMEL80.ARC in the CP/M and Forth Roundtables. Really.
I just uploaded it. (Apologies to those who have been waiting.)

FIGURE 2. HEADER S8TRUCTURES
CamelForth Fig-Forth Pygmy Forth F83

D7 DO D7 DO D7 DO D7 DO
1|P|S| length-

— link — — view — view —
— name —

0 P

""""""""""""" — link — link —

[length
1 0{0|S| length 1|PiS| length

— name —

"""""""""""" D link — name — name —

1

Link - in CamelForth and Fig-Forth, points to the previous word's Length

byte.

In Pygmy Forth and F83, points to the previous word's Link.

P - Precedence bit, equals 1 for an IMMEDIATE word (not used in Pygmy).

8 - Smudge bit, used to prevent FIND from finding this word.

1 - in Fig-Forth and F83, the length byte and the last character of the
name are flagged with a 1 in the most significant bit (bit 7).

View - in Pygmy Forth and F83, contains the block number of the source

code for this word.

The Computer Journal / #69

39

TABLE 1. GLOSSARY OF “HIGH LEVEL" WORDS
(files CAMEL80D.AZM and CAMELB0OH.AZM)

NAME stack in — stack out description

Guide to stack dicgrams: R: = reb.: stack,

¢ = 8-bit charactw:, flag = boolean (0 or -1),

n = gigned 16-bit, u = unsignod 16-bit,

d = signed 32-bit, ud = unsigned 32-bit,

+n = unsigned 15-Lit, x = any cell vaiue,

* j*x = any number of cell values,

a-addr = aligned edrs, c-addr = character adrs

p-addr = VO port adrs, sys = system-specific.

Refer to ANS Forth document for more details.

ANS Forth Core words
These are required words whose definitions are
specified by the ANS Forth document.
» udi — ud2 convert 1 digit of output
S ud1 - ud2 convert remaining digits
» ud1 — c-addru eond conv., get string
! -t find word in dictionary
(- skip input until)
. n1 n2 — n3signed multiply
* ntn2n3 —n4 n1*n2/n3
*MOD nin2n3 -~ nd n5 n1*n2/n3, rem & quot
+LOOP ads— L:Oat182. aN—
N X append cell to dict
! n1 n2 — n3signed divide
MOD n1 n2 — n3 nd signed divide, rem & quot
: — begin a colon definition
' ond a colon definition
<# _ begin numeric conversion
>BODY xt — a-addradrs of param field
>IN — a-addr holds offset into TIB
>NUMBER ud adr u — ud’ adr’ u'
convert string to number
20ROP x1x2— drop 2celis
20UP 12 —x1x2x1x2 dup top 2 cells
20VER x1x2x3 x4 -—x1 2 x3 x4 x1)2 per diag
2SWAP = x1x2x3x4 —x3 x4 x1 x2 per diagram
2t x1 X2 s-addr — store 2 cells
20 a-addr — x1 2 fetch 2 ceils
ABORT ix— R:j'x— clear stack & QUIT
ABORT" iC —i* R jx—j printmsg &
ix1—~ R jx— abortxi<>0
ABS n1—+a2 absolute value
ACCEPT c-addr +n — +n' get line from terminal
ALIGN -— align HERE
ALIGNED addr — a-addr align given addr
ALLOT n— allocate n bytes in dict
BASE — s-addr holds conversion radix
BEGIN —adrs target for backward branch
BL — char an ASCli space
C, char — append char to dict
CELLS n1—n2 celis->adrs units
CELL+ a-addrt — a-addr2 add cell size to adrs
CHAR —char parse ASCH character
CHARS n1—n2 chars>adrs units
CHAR+ c-addrt — c-addr2 add char size to adrs
COUNT c-addrt —c-addr2u counted->adrfien
CR -— output newline
CREATE — create an empty definiti:n
DECMAL — set number base to decimal
DEPTH —+*n number of items on stack
DO ~adrs L:—0 start of DO..LOOP
DOES> — change ection of latest def'n
ELSE adrs1 — adrs2 branch for IF..ELSE
c-addr u — false system query
EVALUATE *y c-addr u — j*x interpret string
FIND c-adir — c-addr 0 ..it name not found
o ¢ ..if immediate
o ..if “normal®
FriiOD dini—n2n3 floored signed division
HERE —addr retums dictionary pointer
HOLD char— add char to output string
F —adrs conditional forward branch
IMMEDIATE — make last defn immediate
LEAVE — L: —adrs exit DO..LOOP
UTERAL x— append numeric literal to dict.
LOOP adre— L:0ata2.aN—
MAX n1 n2 — n3signed maximum
MIN n1 n2 — n3signed minimum
MOD n1 n2 — n3signed remainder
“AOVE addr! addr2u — smart move
[nn2—d signed 16°168->32 multiply
POSTPONE — postpone compile action of word
Qury — R i%— interpret from keyboard
WECJRSE — recurss current dadiniion
LEAT ndvet BTt — reohve WEILE oD
: n— orit NSk sign ¥ aed
STAS = o ns &, Tt L ad dhisicn
e gl 3 CurTEnt put buior
- UL @ SPAT Y
SPACES n-- outxst s SPECSS

STATE — a-addr
s ——
S n—d
THEN adrs — resoive forward bia
TYPE c-addr +n — typa line tr e
UNTIL adrs — conditicnai £ o
U diszley uuns 2wl
display n 8~ &

WHILE — adrs branch for Vi mipT L
WORD char -~ c-addr n purse wore gs i iy che

— enter interpretive: s
[CHAR] e compile characiar iteral
n — find word & compiie ax iters!
] — enter compit'ng state

ANS Forth Extensions
These are optional words whose definitions ara
specified by the ANS Forth document.
.S — print stack contents
ISTRING aun—at+nu-n trim string
AGAIN adrs — uncond’l backward branch
COMPILE, xt— append execution token
DABS d1 —+d2 absolute value, dbi.prec.
DNEGATE d1 —d2 negate, double precision
HEX - set number base to hex
PAD — a-addr user PAD buffer
B8 — a-addr Terminal Input Buffer
WITHIN n1jut n2Ju2 n3ju3 —f test n2<=n1<n3?
WORDS — list all words in dict.

Private Extensions
These are words which are unique to CamelForth.
Many of these are necessary to implement ANS
Forth words, but are not specified by the ANS
document. Others are functions | find useful.

ICF adrs cfa — set code action of & word

ICOLON — change code field to docolon
IDEST dest adrs — change a branch dest'n
MNIT —n #bytes of user area init data

‘'SOURCE — a-addr two cells: len, adrs
(DOES>) — run-time action of DOES>
(Cy) — c-addr u run-time code for S°
BRANCH xt — ppend a branch instruction
CF adrs — append a code fieki

,DEST dest — append a branch address
EXIT - append hi-level EXIT action

;OOUNTED src n dst — copy to counted str

>DIGIT n—c convert to 0.9A..Z
>L x— L —x move to Leave stack
PABORT fc-addru— abort & print msg

TDNEGATE d1 n — d2negate d1 if n negative

TNEGATE n1 n2 — n3 negate n1 if n2 negative

PNUMBER c-addr -——n -1 convert string->number
— c-addr O if convert error

7SIGN adrn—adrn't . get optional sign
advance adr/n if sign; retum NZ if negative
CELL -—n size of one cell
CcoLD — cold start Fort) system
COMPILE — aopend inlina execution token
DIGIT? ¢ —n-i HooE a el digit
—x 0 . otherwige
P — a-addr holds dictionary ptr
ENDLOOP adrsxt— L:Qaia? . eM—
HIDE — “hide” latest definition
HP — a-add; HOLD pointer
IMMED? nfa—1{ fetch immediats 23
INTERPRET i*x c-addr u — j*x
interpret given buffer
Lo — a-addr bottorn of Leave stack
LATEST —a-addr last word in dictionsry
LP — a-addi Leave-stack pointec
L> —x Lix— mova from Lasve siack
NFA>CFA nfa--cfa name adr > code fieid
NFA>LFA nfa—Ha name adr -> iink field
RO — a-addr end of return siack
REVEAL — “revec!” latest definition
SO — 2-addr end of paramsier stack
TBSWE —~-n size of TIB
5] — z-addr cument uset oiem RO
up* udd 5l — ud3 32°16->32 muitinly
VDIMOD radt u2— Ul udd 3216->32 divde
UINIT --addr initial values for user arex
UMAX uf 12— u unsignad maximum
LIMIN 41wl — 1 ursigned mininum

LIRTING 4L Errata s CAMELID.ATM frum TCU $67.

s Cant mux B8 hines o vl BOUS Conction OB,

-Z SAVEKEY -- addr temporary storage for KEY?
Fiad sawcks T SAVERET S %
[

HREY? —~f reiin trus it char waiting
OFF 8 6DOS DUP SAVEKEY C! ;. nins 0 or key
cmuct use D08 function 8o L i aith Y]
hex. nuervkay £ EY?d
Hed LT 0F LT, 06H. BDOS
DV DT BAVEKEY,CSTORE EXIT

— ¢ getchamater ru wavboard

Y O L E A
seat gve CPMia Lire 1t console YO to avoid echo
; ion &, coatained within KEY?}

amg MEY 3 KEY docoion
FEA N DW SAVEKEY,CFETCH,ZEROEQUAL
DW gbranch,KEY2
DW GUERYKEY, DROP, branch,KEY1
DW SAVEKEY,CFETCH,LIT,0
DW SAVEKEY,CSTORE
DW EXIT

Ko Y

: Length in '>* head is incorrect.

C> nin2--flag test n1>n2, signed
head GREATER, 1,>,docolon
DW SWOP,LESS,EXIT

; LISTING 2

Y DROP REPEAT

; CamelForth for the Zilog Z80

; (€) 1994 Bradford J. Rodriguez

. Permission is granted to freely copy, modify,

; and distribute this program for personal or

; sducational use. Commerciai inquiries should
; bo direstad to the author at 221 King St E.,

; #32, Hamilton, Ontario L8N 1B5 Canada

. CAMEL80OH.AZM: High Level Words

;. Source code is for the ZBOMR macro assembler.
;. Forth words are documented as follows:

;* NAME stack — stack description

, Word names in upper case are from the ANS

; Forth Core word set. Names in lower case are

. ‘“internal” implementation words & extensions.

; SYSTEM VARIABLES & CONSTANTS

LBL ~ char
hsad 3(,2,8L,docon
dw 20h

an ASCIi space

;2 tibsize —n size of TIB
head TIBSIZE, 7 TIBSIZE,docon
dw 126 . 2 chars safety zone

X tib —a-addr Terminal Input Buffer
; HEX 80 CONSTANT TIB CPM systems: 128 bytes
; HEX -80 USER TIB others: below user area
head Ti3,3,TIB,docon
dw 80h

Z ul — a-addr
; OUSER UO
head U0,2 UG, douser
dw C

current user area adrs

CIN — a-addr
; 2USER >IN
head TOIN,3,>IN,douser
dw 2

holds offset into TIB

;CBASE — a-addr
. 4 USER BASE
10ad BASE,4,EASE douser
e 4

rolds conversion radix

,C STATE — a-addr holds compiler state

; 8 USER STATE
head STATE,5,STATE, douser
dw 8
Zdp —a-adgr hnlds dictionary ptr
: 3USER DP
head DP,2,0P #xuser
[« 8]

Z 'source — a-adds {wo celis: len, adrs
10 USER ‘SOURCE

neas TICKSOUTCE, 7 'SOURCE, couses

TWlink . must sxpand
eIz . ranually
ink DEFL T ; because of

SR

; tick character
;innzmet

:Zlatest — a-addr last word in dict.
. 14 USER LATEST
head LATEST,8,LATEST,douser
dw 14
Zhp — a-addr HOLD pointer
; 16 USER HP
head HP,2,HP douser
dw 16
ZLP — a-addr Leave-stack pointer
; 18 USERLP
head LP,2,LP,douser
dw 18
Zs0 — a-addr end of parameter stack
head S0,2,S0,douser
dw 100h
XPAD —a-addr user PAD buffer
o = end of hold area!
head PAD,3,PAD,douser
dw 128h
Z0 — g-addr bottom of Leave stack
head L0,2,L0,douser
dw 180h
Zne —a-addr end of retum stack
head RO,2,R0,douser
dw 200h
;Zuinit — addr initial values for user area
head UINIT,5,UINIT docreats
DW 0,0,10,0 :
reserved,>IN,BASE, STATE
DW enddict; DP
DWO00 ; SOURCE initd elsewhere

DW lastword ; LATEST
DWo ; HP init'd eisewhere
:Z#int —n #bytes of user area init data
head NINIT,5,MNIT,docon
DwW 18

; ARITHMETIC OPERATORS

CSD n—d
; DUPO<;
head STOD,3,5>D,docolon
dw DUP,ZEROLESS, EXIT

single -> double prec.

:Z ?NEGATE ni n2— n3 negate n1 if n2 negative
; 0< IF NEGATE THEN ; ... common factor
head QNEGATE, 7, ?NEGATE,docolon
' DW ZEROLESS, gbranch,QNEG1,NEGATE
QNEG1: DWEXIT
iCABS n1—+n2 absolute value
; DUP ?NEGATE ;
head ABS,3,ABS,docolon
DW DUP,QNEGATE, EXIT
X DNEGATE d{ —d2 negate double
precision
. SWAP INVERT SWAP INVERT 1 M+ ;
head DNEGATE,7, DNEGATE,docolon
DW SWOP,INVERT,SWOP
DW INVERT,LIT,1,MPLUS
DW EXIT

.Z 7DNEGATE d1 n—d2 negate d1 if n negative
; 0< IF DNEGATE THEN ; ...a common factor
head QDNEGATE,8, 7DNEGATE,docolon
DW ZEROLESS, gbranch,DNEG1,DNEGATE
DNEG1: DW EXIT
XDABS di —+d2 absolute value dbl.prec.
; DUP 7DNEGATE ;
head DABS,4,DABS, docolon
DW DUP,QDNEGATE,EXIT

CM* ntn2—d signed 16*16->32 multiply

; 2DUP XOR >R carries sign of the result

. SWAP ABS SWAP ABS UM*

; R> ?DNEGATE;

head MSTAR,2,M*,docolon

DW TWODUP XOR,TOR
DW SWOP,ABS, SWOP,ABS UMSTAR
DW RFROM,QDNEGATE EXIT

.CSM/REM dtnt—n2n3 symmetric signed div
. 2DUP XOR >R sign of quotient

; OVER>R sign of remainder

; ABS >R DABS R> UM/MOD

The Computer Journal / #69

. SWAP R> ?NEGATE

. SWAP R> ?NEGATE ;

; Rel. dpANS-6 section 3.2.2.1.

head SMSLASHREM,8,SM/REM, docolon

DW TWODUP,XOR,TOR,OVER, TOR
DW ABS,TOR,DABS,RFROM,UMSLASHMOD
DW SWOP,RFROM,QNEGATE
DW SWOP,RFROM,QNEGATE
DW EXIT

:CFMMOD d1n1—n2n3 floored signed divn

. DUP >R save divisor

. SM/REM

; DUPO<IF if quotient negative,

H SWAP R> + add divisor to rem'dr

; SWAP 1- decrement quotient

; ELSE R> DROP THEN ;

; Ref. dpANS-8 section 3.2.2.1.

head FMSLASHMOD,8,FM/MOD, docolon

DW DUP,TOR,SMSLASHREM
DW DUP,ZEROLESS, qbranch,FMMOD1
DW SWOP,RFROM,PLUS,SWOP ONEMINUS
DW branch,FMMOD2

FMMOD1: DW RFROM,DROP

FMMOD2: DW EXIT

:C* . n1n2— n3signed multiply
; M*DROP;
head STAR,1,"docolon
dw MSTAR,DROP EXIT

:CMOD n1n2-—n3n4 signed divide/rem’dr
; >RSDR> FMMOD ;
head SLASHMOD, 4 /MOD docolon
dw TOR,STOD,RFROM,FMSLASHMOD, EXIT

Hed) n1 n2 — n3signed divide
. MOD nip;
head SLASH,1,/,docolon
dw SLASHMOD,NIP &As

;CMOD n1n2—n3 signed remainder
; /MOD DROP;
head MOD,3,MOD docolon
dw SLASHMOD,DROP,EXIT

;C*™MOD n1n2n3—ndnS n1°n2/n3, rem"
; >R M*R> FMMOD ;
head SSMOD,S5,*/MOD,docolon
dw TOR,MSTAR,RFROM, FMSLASHMOD EXIT
C n1 n2n3 -—nd n1*n2/n3
. *MOD nip ;
head STARSLASH,2,*/,docolon
dw SSMOD,NIP,EXIT

/CMAX n1n2—n3 signed maximum
. 2DUP < iF SWAP THEN DROP ;
head MAX, 3, MAX docolon
dw TWODUP,LESS, gbranch,MAX1,SWOP
MAX1: dw DROP,EXIT

CMIN n1n2—n3 signed minimum
. 2DUP > IF SWAP THEN DROP ;
head MiN,3,MIN,docolon
dw TWODUP,GREATER,gbranch,MIN1, SWOP
MIN1: dw DROP,EXIT

; DOUBLE OPERATORS

C2@ a-addr—x1x2 fetch 2cells
; DUPCELL+ @ SWAPQ;
. the lower address will appear on top of stack
head TWOFETCH, 2,2@,docolon
dw DUP,CELLPLUS FETCH
dw SWOP,FETCH,EXIT

€21 x1x2s-addr— store 2 celis
. SWAPOVER I CELL+ !,
, the top of stack is stored at the lower adrs
head TWOSTORE,2,21,docolon
dw SWOP,OVER,STORE
dw CELLPLUS,STORE,EXIT

;C2DROP x1 2 —
. DROP DROP;
head TWODROP,5,20R0P,docolon
dw DROP,DROP,EXIT

drop 2 celis

;C2DUP x1x2 —x1x2x1x2 dup top 2 cells
; OVEROVER;
head TWODUP,4,2DUP docolon
dw OVER,OVER,EXIT

:C 2SWAP x1 x2 x3 x4 — x3 x4 x1 X2 per diagram
; ROT>RROTR>;
head TWOSWAP,5,2SWAP,docolon
dw ROT,TOR,ROT,RFROM,EXIT

;C 20VER x1x2 x3 x4 — x1 %2 3 x4 x1 x2
; >R>R 20UP R> R> 2SWAP |
head TWOOVER,5,20VER,docolon
dw TOR, TOR, TWODUP,RFROM,RFROM
dw TWOSWAP EXIT

; INPUT/IOUTPUT

;C COUNT c-addri — c-addr2 u counted->adrAien
; DUP CHAR+ SWAPC@Q |
head COUNT,5,COUNT,docolon

iCCR -
; OD EMIT OA EMIT ;
head CR,2,CR,docolon
dw lit,0ch, EMIT, lit, Oah, EMIT,EXIT
CSPACE —

output s space
; BLEMIT;

head SPACE,S,SPACE,docolon
dw BLEMIT,EXIT

output newline

/CSPACES n— output n spaces
;. BEGIN DUP WHILE SPACE 1- REPEAT DROP ;
head SPACES,8,SPACES, docolon
SPCS1: DW DUP,gbranch,SPCS2
DW SPACE,ONEMINUS branch,SPCS1
SPCS2: DW DROP.EXIT

.Z umin ut U2 —u unsigned minimum
. 20UP U> IF SWAP THEN DROP ;
head UMIN, 4 UMIN,docolon
DW TWODUP,UGREATER
DW QBRANCH,UMIN1,SWOP
UMIN1: DW DROP,EXIT
Zumax ulu2—u unsigned maximum
; 2DUP U< IF SWAP THEN DROP ;
head UMAX,4,UMAX docolon
DOW TWODUP,ULESS
DW QBRANCH,UMAX1,SWOP
UMAX1: DW DROP EXIT

:C ACCEPT c-addr +n — +n’ get line from term’l

; OVER+1-OVER -—sae®aa
. BEGIN KEY —saonac
; DUPOD <> WHILE

; DUP EMIT —saeaac
H DUP 8 = IF DROP 1- >R OVER R> UMAX
ELSE OVER Ci 1+ OVER UMIN

; THEN —sacas
. REPEAT—sseaac
; DROP NIP SWAP -;
head ACCEPT,8,ACCEPT,docolon
DW OVER,PLUS,ONEMINUS,OVER
ACC1: DW KEY,DUP,LIT,00H,NOTEQUAL
DW QBRANCH,ACCS
OW DUP,EMIT,DUP,LIT.8
DW EQUAL,QBRANCH,ACC3
DW DROP,ONEMINUS, TOR
DW OVER,RFROM,UMAX
DW BRANCH,ACC4
ACC3: DW OVER,CSTORE,ONEPLUS,OVER,UMIN
ACCA: DW BRANCH,ACC1
ACCS: DW DROP NIP,SWOP,MINUS, EXIT
.CTYPE c-addr +n —type line to term’l
; ?DUPIF
; OVER + SWAP DO | C@ EMIT LOOP
; ELSE DROP THEN ;
head TYPE, 4, TYPE,docolon
DW QDUP,QBRANCH,TYP4
DW OVER,PLUS,SWOP XDO
TYP3: DW II,CFETCH,EMIT XLOOP, TYP3
DOW BRANCH,TYPS
TYP4: DW DROP
TYPS: DW EXIT
Z(SD) — c-addru run-time code for S”
. R> COUNT 2DUP + ALIGN >R ;
head XSQUOTE, 4,(S"),docolon
DW RFROM,COUNT, TWODUP
DW PLUS,ALIGN,TOR
DW EXIT
Kol-y -_ compile in-line string

. COMPILE (S") [HEX]
. 2WORD C@ 1+ ALIGN ALLOT ; IMMEDIATE
immed SQUOTE,2,S" docolon

41

DW LIT XSQUOTE, COMMAXT
OW LIT, 224 WORD,CFETCH,ONEPLUS
DW ALIGN,ALLOT,EXIT

cr compile string to print
H POSTPONE S$* POSTPONE TYPE ; IMMEDIATE
immed DOTQUOTE,2,.” docolon
DW SQUOTE
DW LIT, TYPE,COMMAXT
DW EXIT

» NUMERIC OUTPUT

. Numeric corversion is done |.s.digit first, so
; the output buffer is built backwards in memory.

 Some double-precision arithmetic operators are
 neaded 10 implement ANS - ion.

;ZUDMOD udt u2— uS ud4 32/16->32 divide

Zuo udt d2 — ud3 32*16->32 mutltiply
. DUP >R UM* DROP SWAP R> UM* ROT +;
head UDSTAR,3,UD",docolon
DW DUP,TOR,UMSTAR,DROP
DW SWOP RFROM,UMSTAR,ROT,PLUS EXIT

;CHOLD char—
; “THP+l WP @C!;
head HOLD,4,HOLD,docolon
DW LIT,-1,HP,PLUSSTORE
DW HP,FETCH,CSTORE EXIT

add char to output string

.C <# — begin numeric conversion
; PADHPI; (initialize Hold Pointer)
head LESSNUM,2,<#,docolon
DW PAD,HP,STORE,EXIT

Z>digt n—c convert 10 0..9A..Z
; [HEX]DUPO>T7AND + 30 +;
head TODIGIT,8,>DIGIT,docolon
DW DUP LIT 9,GREATER LIT,7,AND,PLUS
DW LIT,30H,PLUS EXIT

C# ud! — wd2 convert 1 digit of output
. BASE @ UDMOD ROT >digit HOLD ;
head NUM, 1,8 docolon
DW BASE, FETCH,UDSLASHMOD
DW ROT, TODIGIT
DW HOLD,EXIT

C#S udl —ud2 convert remaining digits
. BEGIN #2DUP OR 0= UNTWL ;
head NUMS,2,#8, docolon
NUMSY: DW NUM,TWODUP,OR,ZEROEQUAL
DW gbranch,NUMS1
DW EXIT

Cb ud1 — c-addr u ondeonv get string

DNPADOVERMINUSEXIT

JCSIGN n— add minus sign if n<0
; 0<IF2DHOLD THEN ;
head SIGN, 4,SIGN,docolon
ow

ZEROLESS, gbranch, SIGN1,LIT,2DH,HOLD
SIGNY: DWEXIT

CU. u—display u unsigned
;. <#O0#S# TYPE SPACE ;
head UDOT,2,U.,docolon
DW LESSNUM.LIT, O NUMS
DW NUMGREATER,TYPE
DW SPACE,EXIT

iC. n— display n signed
; <R DUP ABS 0 #S ROT SIGN # TYPE SPACE ;
heed DOT, 1,"." docolon
DW LESSNUM,DUP,ABS LIT,0 NUMS
DW ROT,SIGN,NUMGREATER
DW TYPE,SPACE EXIT
:C DECIMAL — set number base to decimal
: 10BASE1;
head DECIMAL,7,DECIMAL,docolon
DW LIT,10,BASE,STORE,EXIT

42

XHEX —
, 18 BASE!;

head HEX,3,HEX docolon
DW LIT,16,BASE,STORE EXIT

set number base to hex

; DICTIONARY MANAGEMENT

;CHERE — addr returns dictionary ptr
. DP@.
head HERE, 4, HERE, docolon

dw DP,FETCH,EXIT

{CALLOT n—
; DP+l;
head ALLOT,5,ALLOT,docolon
dw DP,PLUSSTORE,EXIT

allocate n bytes in dict

; Note: , and C, are only valid for combined
; Code and Data spaces.

«C. x— append cell to dict
; HERE ! 1 CELLS ALLOT;
head COMMA, 1,".' docolon
dw HERE,STORE lit,1,CELLS, ALLOT EXIT

.CC, char— append char to dict
; HERE C! 1 CHARS ALLOT ;
head CCOMMA,2,'C,’ docolon
dw HERE,CSTORE,lit,1, CHARS ALLOT,.EXIT

. INTERPRETER

; Note that NFA>LFA, NFA>CFA, IMMED?, and FIND
; are deépendent on the structure of the Forth

; header. This may be common across many CPUs,
. OF it may be different.

JCSOURCE —adrn cument input buffer
; 'SOURCE 2@ length is at lower adrs
head SOURCE,8,SOURCE,docolon
DW TICKSOURCE, TWOFETCH,EXIT

X/STRING aun—a+nu-n trim string
; ROTOVER + ROTROT-;
head SLASHSTRING,7 /STRING,docolon
DW ROT,OVER,PLUS,ROT,ROT,MINUS, EXIT

;2 >counted src n dst — copy to counted str
; 2DUP Ct CHAR+ SWAP CMOVE ;
head TOCOUNTED,8,>COUNTED, docolon
DW TWODUP,CSTORE,CHARPLUS
DW SWOP,CMOVE EXIT

;CWORD char—c-addrn word delim'd by char
; DUP SOURCE >IN @ /STRING —ccadrn
; DUP>R ROT SKIP —c adr n'
; OVER >R ROT SCAN —adt"n"
; DUP IF CHAR- THEN skip trailing delim.
; R>R>ROT- >IN +lupdate >IN offset
i TUCK- —adf N
. HERE >counted ~—
. HERE —a
; BLOVERCOUNT +Cl; append trailing blank
head WORD, 4, WORD,docolon
DW DUP,SOURCE, TOIN
DW FETCH,SLASHSTRING
DW DUP,TOR,ROT,SKIP
DW OVER,TOR,ROT,SCAN
DW DUP,qbranch, WORD1,ONEMINUS ; char-
DW RFROM,RFROM,ROT,MINUS
DW TOIN,PLUSSTORE
DW TUCK MINUS
DW HERE, TOCOUNTED,HERE
DW BL,OVER,COUNT,PLUS,CSTORE,EXIT

WORD1:

;ZZNFA>LFA nfa—Ifa name adr -> link field

P 3-
head NFATOLFA,7,NFA>LFA,docoion
DW LIT,3,MINUS, EXIT

:ZNFA>CFA nfa —cfa name adr -> code field
. COUNT 7F AND +; mask off ‘'smudge’ bit
head NFATOCFA,7, NFA>CFA,docolon
DW COUNT,LIT,07FH,AND,PLUS, EXIT

ZZIMMED? nfa—t fetch immediate flag
; 1-C@; nonzero if immed
head IMMEDQ,8,IMMED? docolon
DW ONEMINUS,CFETCH,EXIT

;CFIND c¢-addr — c-addr O if not found
.C xt 1 if immediate

C xt -1 it “normal”
. LATEST@BEGIN —anfa
: 2DUP OVER C@ CHAR+ —anfaa
nfa n+1
H S= —anfaf
) ouP IF
H DROP
H NFA>LFA @ DUP — a link link
; THEN
; 0= UNTIL —anfa OR a0
. DUPIF
B NIP DUP NFA>CFA —nfaxt
. SWAP IMMED? — xt iflag
. 0=10R —xt1/1
. THEN;
head FIND,4,FIND,docolon
DOW LATEST,FETCH

FIND1: DW TWODUP,OVER,CFETCH,CHARPLUS
DW SEQUAL,DUP,qbranch, FIND2
DW DROP,NFATOLFA,FETCH,DUP
FIND2: DW ZEROEQUAL,qbranch,FIND1
DW DUP qbranch,FIND3
DW NIP,DUP ,NFATOCFA
DW SWOP iIMMEDQ,ZEROEQUAL LIT,1,0R
FIND3: DW EXIT

JCLITERAL x— append numeric literal
; STATE @ IF [LIT XT, THEN ; IMMEDIATE
; This tests STATE so that it can aiso be used
; interpretively. (ANS| doesn't require this.)
immed LITERAL,7 LITERAL docolon
DW STATE,FETCH,gbranch,LITER1
DW LIT,LIT, COMMAXT, COMMA
LITER1: DWEXIT
ZDIGIT? c¢—n-1 ifcisa valid digit
; —x 0 otherwise
; [HEX] DUP 39 > 100 AND +
. DUP 140> 107 AND- 30-
; DUP BASE @ U<;
head DIGITQ,8,DIGIT?,docolon
DW DUP,LIT,38H,GREATER
DW LIT,100H,AND,PLUS
DW DUP,LIT,1404,GREATER,LIT,107H,AND
DW MINUS,LIT,30H,MINUS
DW DUP,BASE,FETCH,ULESS EXIT

silly looking
but it works!

\Z ?SIGN adrn — adr' n' f get optional sign

,Z advance adr/n if sign; retumn NZ if negative

; OVERC@ —adrnc

; 2C-DUPABS1=AND —+=-1, =+1, else0

; DUPIF 1+ — +=0, =+2

H >R 1 /STRING R> —adrn'f

; THEN;

head QSIGN,5,7SIGN,docoion

OW OVER,CFETCH,LIT,2CH MINUS,DUP,ABS
DW LIT,1,EQUAL,AND,DUP,gbranch,QSIGN1
DW ONEPLUS, TORLIT,1
DW SLASHSTRING, RFROM

QSIGN1: DW EXIT

;€ >NUMBER ud adr u — ud’ adr u'

C convert string to number

. BEGIN

; DUP WHILE

N OVER C@ DIGIT?

' 0= IF DROP EXIT THEN

: >R 2SWAP BASE @ UD*

: R> M+ 2SWAP

R 1 /STRING

; REPEAT;

head TONUMBER,7,>NUMBER,docolon
TONUM1: DW DUP,gbranch, TONUM3
DW OVER,CFETCH,DIGITQ
DW ZEROEQUAL qbranch
DW TONUM2,DROP,EXIT
TONUM2: DW TOR,TWOSWAP,BASE,FETCH,UDSTAR
DW RFROM,MPLUS, TWOSWAP
DW LIT,1,SLASHSTRING, branch, TONUM1
TONUM3: DW EXIT

Z NUMBER c-addr—n -1 string->number
-— c-addr 0 if convert error
DUP 00 ROT COUNT ~~caud adrn
?SIGN >R >NUMBER —caud adr n'
IF R>2DROP 2DROP 0 —ca0 (emor) .
ELSE 2DROP NIP R>
{F NEGATE THEN -1 —n -1 (ok)

THEN ;
head QNUMBER,7,?NUMBER,docolon
DW DUP,LIT,0,0UP,ROT,COUNT
DW QSIGN,TOR, TONUMBER, gbranch, QNUM1
DOW RFROM,TWODROP, TWODROP,LIT,0
DW branch,QNUM3
QNUM1: DW TWODROP NIP,RFROM

The Computer Journal / #69

DW gbranch,QNUM2,NEGATE
QNUM2: DWLIT,-1
QNUM3: DW EXIT

:ZINTERPRET i*x c-addr u — j*™x

Z interpret given buffer

: This ts a common factor of EVALUATE and QUIT.

: ref. dpANS-8, 3.4 The Forth Text interpreter
‘SOURCE 2t 0>INt

; BEGIN
; BL WORD DUP C@ WHILE — textadr
H FIND - a 01/
H WUPIF —xt 14
o 1+ STATE @ 0= OR immed or interp?
' IF EXECUTE ELSE XT THEN
H ELSE — textadr
H MINUMBER
3 IF POSTPONE LITERAL converted
ok
H ELSE COUNT TYPE 3F EMIT CR ABORT em
H THEN
H THEN
; REPEATDROP;
head INTERPRET,9,INTERPRET,docolon
DW TICKSOURCE, TWOSTORE
DW LIT,0,TOIN,.STORE
INTER1: DW BL,WORD,DUP CFETCH,gbranch,INTER®
DW FIND,QDUP, gbranch,INTER4
DW ONEPLUS,STATE
DW FETCH,ZEROEQUAL,OR
DW qbranch,INTER2
DW EXECUTE,branch,INTER3
INTER2. OW COMMAXT
INTER3: DW branch,INTERS
INTER4: DW QNUMBER,gbranch,INTERS
DW LITERAL ,branch,INTERS
INTERS: DW COUNT,TYPE,LIT,3FH,EMIT,CR,ABORT
INTERS:
INTERS: DWW branch,INTERY
INTERS: DW DROP,EXIT

;C EVALUATE i*x c-addr u -— j*x interprt string

; 'SOURCE 2@ >R >R >»IN@ >R

i INTERPRET

; R>>INI R>R>'SOURCE 2!,

head EVALUATE,8,EVALUATE docolon

DOW TICKSOURCE, TWOFETCH,TOR,TOR
DW TOIN,FETCH,TOR INTERPRET
DW RFROM,TOIN, STORE, RFROM,RFROM
DW TICKSOURCE, TWOSTORE EXIT

CQUIT — R:i*x— interpret from kbd
. LOLP| RORPI OSTATE!
; BEGIN
: TIB DUP TIBSIZE ACCEPT SPACE
; INTERPRET
; STATE @ 0= IF CR ." OK” THEN
. AGAIN;
head QUIT,4,QUIT,docolon

DW LO,LP,STORE

DW RO,RPSTORE,LIT,0,STATE,STORE
Quirt: OW TIB,DUP,TIBSIZE ACCEPT

DW SPACE,INTERPRET

DW STATE,FETCH,ZEROEQUAL

DW gbranch,QUIT2

DW CR,XSQUOTE

DB 3ok’

DW TYPE
QuIT2: DW branch,QUITY

:CABORT i*x— R:j*x— clear stk & QUIT
. SOSPt QUIT;
head ABORT,5,ABORT docolon
DW SO0,SPSTORE,QUIT ; QUIT never retums

;Z ?PABORT fc-addru— abort & print msg
; ROT IF TYPE ABORT THEN 2DROP ;
head QABORT,8,7ABORT,docolon
DW ROT,qbranch,QABO1,TYPE,ABORT
QABO1: DW TWODROP,EXIT
;C ABORT" i*x0 —i*x R:j*—j* x1=0
Ko i"x1— Rjx— x1<>0
. POSTPONE S" POSTPONE ?ABORT ; IMMEDIATE
immed ABORTQUOTE,6,ABORT" docolon
DW SQUOTE
DW LIT,QABORT,COMMAXT
DW EXIT

:C' —xt find word in dictionary
; BLWORD FIND

; 0= ABORT 7",

. head TICK,1,’ docolon

The Computer Journal / #69

DW link ; must expand
D8O ; manually

link DEFLS$; because of
DB 1,27h ; tick character

TICK: call docolon
DW BL,WORD,FIND,ZEROEQUAL XSQUOTE

;C CHAR —char
; BLWORD1+C@;
head CHAR,4,CHAR,docolon
DW BL WORD,ONEPLUS,CFETCH,EXIT

parse ASCH character

;C[CHAR] — compile character literal
. CHAR []LIT XT ,; IMMEDIATE
immed BRACCHAR,8,[CHAR],docolon
DW CHAR
DW LIT,LIT, COMMAXT
DW COMMA EXIT

«C(— skip input untit)
5 [HEX] 20 WORD DROP ; IMMEDIATE
immed PAREN, 1,(,docolon
DW LIT,20H,WORD,DROP,EXIT

; COMPILER

C CREATE — create an empty definition

LATEST@ ,0C, link & immed field

HERE LATEST! new "latest” link

BL WORD C@ 1+ ALLOT name field

docreate ,.CF code field

head CREATE,8,CREATE,docolon
DW LATEST,FETCH,COMMA LIT,0, CCOMMA
DW HERE,LATEST,STORE
DW BL,WORD,CFETCH,ONEPLUS,ALLOT
DW LIT,docreate, COM 4~ F EXIT

.Z (DOES>) — run-time action of DOES>
. R> adrs of headless DOES> defn

; LATEST@ NFA>CFA code field to fix up
. ICF;
head XDOES,7,(DOES>),docolon
DW RFROM,LATEST,FETCH
DW NFATOCFA,STORECF
DW EXIT

,CDOES> —
; COMPILE (DOES>)
. dodoes ,CF ; IMMEDIATE
immed DOES,5,DOES>, docolon
DW LIT,XDOES,COMMAXT
DW LIT,dodoes, COMMACF EXIT

change action of latest defn

:C RECURSE — recurse current definition
; LATEST @ NFA>CFA XT ; IMMEDIATE
immed RECURSE,7,RECURSE,docolon
DW LATEST,FETCH,NFATOCFA
OW COMMAXT EXIT

Cl - enter interpretive state
. O STATE | ; IMMEDIATE
immed LEFTBRACKET,1,[.docolon
DW LIT,0,STATE, STORE EXIT

iCl -
. -1STATEL;

head RIGHTBRACKET, 1,],docolon
DW LIT,-1,STATE,STORE EXIT

enter compiling state

ZHDE — “hide” latest definition
; LATEST @ DUP C@ 80 OR SWAP Ci ;
head HIDE,4,HIDE, docolon
DW LATEST,FETCH,DUP
DW CFETCH,UIT,804,0R
DW SWOPR,CSTORE EXIT
;Z REVEAL — “reveal” latest definition
; LATEST @ DUP C@ 7F AND SWAP Ct ;
head REVEAL,8 REVEAL,docolon
DW LATEST,FETCH,DUP
DW CFETCH,UIT,7FH,AND
DW SWOP,CSTORE, EXIT

;C IMMEDIATE — make last def n immediate
. 1LATEST @ 1- C!; setimmediate flag
head IMMEDIATE,9,IMMEDIATE docolon
DW LIT,1,LATEST,FETCH
DW ONEMINUS,CSTORE
DW EXIT

C: begin a colon definition
; CREATE HlDE JICOLON ;

head COLON,1,:,docode
CALL docolon ; code fwd ref explicitly
DW CREATE,HIDE,RIGHTBRACKET
DW STORCOLON
DW EXIT

C
. REVEAL EXIT
; POSTPONE [; IMMEDIATE
immed SEMICOLON, 1,";',docolon
DW REVEAL,CEXIT
OW LEFTBRACKET,EXIT

C[]1 — find word & compile as literal
;' [T XT |, ; IMMEDIATE
; When encountered in a colon definition, the
; phrase []jx will cause LiT)ot 1o be
; compiled into the colon definition (where
; (where 1ot is the exscution token of word 100J.
; When the colon definition exscutes, ot wilt
; be put on the stack. (AN xts are one cell.)
;. immed BRACTICK,3,['].docoion
OW link ; must expand
0B 1 ; manually
link DEFLS ; because of
DB 3,58h,27h,5Dh ; tick character
BRACTICK: call docolon
DW TICK ; get xt of “oo¢
DW LIT,LIT,COMMAXT ; append LIT action
DW COMMA EXIT ; append xt literai

:C POSTPONE — postpone compile action of word
. BLWORD FIND

. DUP 0= ABORT" 7"
; 0<IF —xt non immed: add code to current
R def'n to compile xt later.

[1.XT . XT to current definition
; ELSE XT
. THEN ; IMMEDIATE

immed POSTPONE,8,POSTPONE docolon

DW BL,WORD,FIND,DUP

DW ZEROEQUAL XSQUOTE

0B 1,7

DW QABORT,ZEROLESS, qbranch,POST1

DW LIT,LIT, COMMAXT,COMMA

DW LIT,COMMAXT, COMMAXT branch,POST2
POST1: DW COMMAXT
POST2 DWEXIT

; [I LT XT , add "LIT,t, COMMAXT"
: immed: compile into cur. defn

,ZCOMPILE — append inline execution token
, R>DUP CELL+>R @ XT;
; The phrase ['] o XT appears so often that
; this word was created to combine the actions
; of LIT and XT. It takes an inline literal
; execution token and appends it to the dict.
. head COMPILE, 7, COMPILE docolon
. DW RFROM,DUP,CELLPLUS, TOR
; DW FETCH,COMMAXT,BEXIT
NB not used in the current implementation

; CONTROL STRUCTURES

iCIF — adrs conditional forward branch
. [} qbranch ,.BRANCH HERE DUP ,DEST ;
. IMMEDIATE
immed IF,2,IF,docolon
DW LIT,qbranch, COMMABRANCH
DW HERE,DUP,COMMADEST,EXIT

;CTHEN adrs — resolve forward branch
; HERE SWAP |DEST ; IMMEDIATE
immed THEN,4, THEN, docolon
DW HERE,SWOP ,STOREDEST,EXIT

CELSE adrs1 —adrs2 branch for IF. ELSE
: {]branch ,BRANCH HERE DUP ,DEST
. SWAP POSTPONE THEN ; IMMEDIATE
immed ELSE, 4, ELSE, docolon
DW LIT,branch, COMMABRANCH
DW HERE,DUP,COMMADEST
DW SWOP.,THEN,EXIT

;CBEGIN —adrs
. HERE ; IMMEDIATE
immed BEGIN,5 BEGIN,docode
jp HERE

target for bwd. branch

:CUNTIL adrs — conditional backward branch
; [} gbranch ,BRANCH ,DEST ; IMMEDIATE
., conditional backward branch
immed UNTIL,5,UNTIL docolon
DOW LIT,qbranch, COMMABRANCH
DW COMMADEST, EXIT

43

X AGAIN adrs — uncond'l backward branch
. [] branch . BRANCH ,DEST ; IMMEDIATE
| ditional back d bl h
immed AGAIN,5,AGAIN,docolon
DW LIT,branch, COMMABRANCH
DW COMMADEST, EXIT

CWHILE —adrs branch for WHILE loop
; POSTPONE IF ; IMMEDIATE
immed WHILE,5 WHILE,docode
pIF

;C REPEAT adrs1 adrs2 — resolve WHILE loop
. SWAP POSTPONE AGAIN POSTPONE THEN ;
IMMEDIATE
immed REPEAT,8,REPEAT docolon
DW SWOP,AGAIN, THEN,EXIT

2> x— Li—x move to leave stack
; CELLLP +! LP @1 ;(L stack grows up)
head TOL,2,>L docolon
DW CELL,LP,PLUSSTORE
DW LP FETCH,STORE, EXIT

Zb» —x Lix— move from leave stack
. LP@ @ CELLNEGATELP +I;
head LFROM,2,L>,docolon
DW LP FETCH,FETCH
DW CELL,NEGATE,LP PLUSSTORE EXIT

.CDO —adrs L.—0
. [1xdo ,BRANCH HERE target for bwd branch
; 0>L;IMMEDIATE marker for LEAVEs
immed DO,2,D0,docolon
DW UIT, xdo, COMMABRANCH, HERE
DW LIT,0,TOL EXIT

ZENDLOOP adrsxt— L:Oata2. aN—
. .BRANCH ,DEST backward loop
. BEGIN L> 2DUP WHILE POSTPONE THEN REPEAT ;
s resolve LEAVES
, This is & common factor of LOOP and +LOOP.
head ENDLOOP,7,ENDLOOP, docolon
DW COMMABRANCH,COMMADEST
LOOP1: DW LFROM,QDUP gbranch,LOOP2
DW THEN, branch,LOOP1
LOOP2: DW EXIT

CLOOP adrs— L:0ala2. aN—
; [1xoop ENDLOOP ; IMMEDIATE
immed LOOP,4,LOOP,docolon
DW LIT,xloop, ENDLOOP EXIT

;C+LOOP adrs— L:0atla2.. aN—
; [1xplusloop ENDLOOP ; IMMEDIATE
immed PLUSLOOP,5,+1.OOP,docolon

DW LIT,xplusloop, ENDLOOP EXIT
CLEAVE — L:—adrs
;. [TUNLOOP XT

; [) branch BRANCH HERE DUP DEST >L
; IMMEDIATE unconditional forward branch
immed LEAVE,S,LEAVE,docolon
DW LIT,unloop, COMMAXT
DW LIT, branch, COMMABRANCH
DW HERE,DUP,COMMADEST,TOL EXIT

. OTHER OPERATIONS

XWITHIN nijut n2ju2 n3ju3 —f n2<=n1<n3?
; OVER - >R - R> U< ; per ANS document
head WITHIN,8, WITHIN,docolon
DW OVER,MINUS,TOR,MINUS
DW RFROM,ULESS EXIT

;CMOVE addri addr2 u — smart move
X VERSION FOR 1 ADDRESS UNIT = 1 CHAR
. >R 2DUP SWAP DUP R@ + — ... dst src sic+n
; WITHIN IF R> CMOVE> src <= dst < src+n
ELSE R> CMOVE THEN; otherwise
head MOVE,4, MOVE,docolon
OW TOR, TWODUP,SWOP
DW DUP RFETCH,PLUS
DW WITHIN, gbranch, MOVE 1
DW RFROM,CMOVEUP branch, MOVE2
MOVE1: DW RFROM,CMOVE
MOVE2: DW EXIT

/CDEPTH —+n number of iteme on stack
, SP@ SO SWAP -2, 16-BIT VERSIONt
head DEPTH,5,DEPTH, docolon
DW SPFETCH,S0,SWOP

44

DW MINUS, TWOSLASH, EXIT

,C ENVIRONMENT? c-addr u — faise system query
R — i*x true

. 2DROP O, the minimal definition!

head ENVIRONMENTQ, 12, ENVIRONMENT?,docolon

DW TWODROP,LIT,0,EXIT

. UTILITY WORDS AND STARTUP

XWORDS —
LATEST @ BEGIN
; DUP COUNT TYPE SPACE
; NFA>LFA @
. DUP 0= UNTIL
, DROP;
head WORDS,5,WORDS, docolon
DW LATEST,FETCH
wDSs1: DW DUP,COUNT,TYPE SPACE
DW NFATOLFA FETCH
DW DUP,ZEROEQUAL qbranch WDS1

list all words in dict.

Dw DROP,EXIT
X.8 —_ print stack contents
. SP@ SO-IF
¥ SP@sS02-DOI@U. -2 +LOOP
. THEN;

head DOTS,2,.S,docolon

DW SPFETCH,S0,MINUS, gbranch, DOTS2

DW SPFETCH,SO LIT,2, MINUS XDO
DOTSt: DW IILFETCH,UDOT,LIT

DW -2 XPLUSLOOP,DOTS1
DOTS2: DWEXIT

ZCOLD — cold start Forth system
, UINIT U0 #INIT CMOVE init user area
; TIB COUNT INTERPRET interpret CP/M cmd
., ." Z80 CameiForth etc.”
, ABORT;
head COLD,4,COLD,docolon
DW UINIT,UO,NINIT,CMOVE
DW TIB,COUNT INTERPRET
DW XSQUOTE
DB 35,'Z80 CamelForth v1.0 19 Aug 1994
DB 0dh,0ah
DW TYPE,ABORT ; ABORT never returns

, LISTING 3.

; CamelForth for the Zilog Z80

; (c) 1994 Bradford J. Rodriguez

; Permission is granted to freely copy, modify,

, and distribute this program for personal or

; educational use. Commercial inquiries should
, be directed to the author at 221 King St. E.,

; #32, Hamitton, Ontario L8N 1BS Canada

. CAMEL80D.AZM: CPU and Model Dependencies
. Source code is for the ZBOMR macro assembler.
. Forth words are documented as follows:

;* NAME stack — stack description

. Word names in upper case are from the ANS

; Forth Core word set. Names in lower case are

, C“internal” implementation words & extensions.

, Direct-Threaded Forth model for Zilog Z80
;. cell sizeis 16 bits (2 bytes)

; charsizeis 8 bits (1 byte)

; address unit is 8 bits {1 byte), i.e.,

: addresses are byte-aligned.

; Many of these are synonyms for other words,
; and so are defined as CODE words.

{CALIGN — align HERE
head ALIGN,5,ALIGN,docode
noop. next

;C ALIGNED addr — a-addr align given addr
head ALIGNED,7,ALIGNED,docode

jr noop
ZCELL —n size of one cell
head CELL 4,CELL docon
dw 2

JCCELL+ a-addr1 — a-addr2 add cell size
L2+
head CELLPLUS,5,CELL+,docode

inc bc
inc be
next

{CCELLS n1—n2 ceils->adrs units
head CELLS 5,CELLS, docode
jp twostar

;C CHAR+ c-addri — c-addr2 add char size
head CHARPLUS,5,CHAR+ docode
jp oneplus

CCHARS nt1—n2 chars->adrs units
head CHARS,5,CHARS,docode
jr noop

.C>BODY xt— a-addr
; 3+, Z80 (3 byte CALL)
head TOBODY,5,>BODY ,docolon
DW LIT 3,PLUS EXIT

adrs of param field

X COMPILE, xt— append execution token
. | called this word XT before | discovered that
. itis defined in the ANS! standard as COMPILE,.
, On a DTC Forth this simply appends xt (like ,)
; but on an STC Forth this must append ‘CALL xt'.
head COMMAXT,8,'COMPILE,',docode
jp COMMA

;ZICF adrs cfa — set code action of a word
, OCDOVERC! store ‘CALL adrs' instr
1+ 780 VERSION
, Depending on the implementation this could
, append CALL adrs or JUMP adrs.
head STORECF,3,!CF,docoion
OW LIT,0CDH,OVER,CSTORE
DW ONEPLUS STORE,.EXIT

;Z CF adrs — append a code field
HERE {CF 3 ALLOT ; Z80 VERSION (3 bytes)
head COMMACF 3, CF' docolon
OW HERE,STORECF,LIT,3 ALLOT EXIT

\ZICOLON — change code field to docolon
. -3 ALLOT docoion-adrs ,CF ;
; This should be used immediately after CREATE.
, This is made a distinct word, because on an STC
; Forth, colon definitions have no code field.
head STORCOLON,86,'{COLON’,docolon
DW LIT,-3,ALLOT
OW LIT,docolon, COMMACF EXIT

ZEXIT —
. [EXIT XT;
; This is made a distinct word, because on an STC
; Forth, it appends a RET instruction, not an xt.
head CEXIT,5, EXIT ,docolon
DW LIT,EXIT,COMMAXT,EXIT

append hi-level EXIT action

. CONTROL STRUCTURES

;. These words ailow Forth controt structure words
; to be defined portably.

;Z BRANCH xt— append a branch instruction
; xt is the branch operator to use, e.g. gbranch
; or (loop). It does NOT append the destination
; address. On the Z8O this is equivalent to ,XT.
head COMMABRANCH,7,' BRANCH',docode
ip COMMA

,Z DEST dest— append a branch address
; This appends the given destination address to
; the branch instruction. On the Z80 this is *,
; ...other CPUs may use relative addressing.
head COMMADEST,S,’ DEST docode
ip COMMA

\Z IDEST destadrs — change a branch dest'n
; Changes the destination address found at ‘adrs’
; to the given ‘dest. On the Z80 this is ‘!’
; ...other CPUs may need relative addressing.
head STOREDEST,S,'{DEST ,docode
jp STORE

. HEADER STRUCTURE

; The structure of the Forth dictionary headers

; (name, link, immediate flag, and “smudge” bit)

, does not necessarily differ across CPUs. This

; structure is not easily factored into distinct

, “portable” words, instead, it is implicit in

; the definitions of FIND and CREATE, and also in

i NFA>LFA, NFA>CFA, IMMED?, IMMEDIATE, HIDE, and
; REVEAL. These words must be (substantially)

, rewritten if either the header structure or its

; inherent assumptions are changed. (end listings.)

The Computer Journal / #69

SUPPORT GROUPS FOR THE CLASSICS

TCJ Staff Contacts

TCIJ Editor: Bill D. Kibler, PO Box 535, Lincoln, CA 95648, (916)645-
1670, GEnie: B.Kibler, CompuServe: 71563,2243, E-mail:
‘B Kibler@Genie.geis.com.

Z-System Support: Jay Sage,1435 Centre St. Newton Centre, MA
02159-2469, (617)965-3552, BBS: (617)965-7259; E-mail:
Sage@il.mit.edu. Also sells Z-System software.

32Bit Support: Rick Rodman, BBS:(703)330-9049 (eves), E-mail:
rickr@pvirtech.vti.com.

Kaypro Support: Charles Stafford, 4000 Norris Ave., Sacramento,
CA 95821, (916)483-0312 (eves). Also sells Kaypro upgrades, see
ad inside back cover. CompuServe 73664,2470 (73664.2470@cis).

S-100 Support: Herb Johnson, CN 5256 #105, Princeton, NJ 08543,
(609)771-1503. Also sells used S-100 boards and systems, see inside
back cover.

6800/6809 Support: Ronald Anderson, 3540 Sturbridge Ct., Ann
Arbor, MI 48105.

Regular Contributors:

,Dave Baldwin, Voice/FAX (916)722-3877, or DIBs BBS (916) 722-
5799 (use "computer”, "journal”, pswd "subscriber” as log on),
Internet dibald@netcom.com, CompuServe 70403,2444.

Brad Rodriguez,Box 77, McMaster Univ., 1280 Main St. West,
Hamilton, ONT, L8S 1CO0, Canada, Genie: B.Rodriguez2, E-mail:
b.rodriguez2@genie.geis.com.

Frank Sergeant, 809 W. San Antonio St., San Marcos, TX 78666, E-
mail: fs07675@academia.swt.edu.

Tilmann Reh, Germany, E-mail: tilmann.reh@hrz.uni-siegen.d400.de.
Has many programs for CP/M+ and is active with Z180/280 ECB
bus/Modular/Embedded computers. USA contact Jay Sage.

Helmut Jungkunz, Munich, Germany, ZNODE #51, 8N1, 300-14.4,
+49.89.9614574, or CompuServe 100024,1545.

Ron Mitchell, Apt 1107, 210 Gloucester St., Ottawa Ontario, Canada,
K2P 2K4. GEnie as R.Mitchell31, or CompuServe 70323,2267.

USER GROUPS

Connecticut CP/M Users Group, contact Stephen Griswold, PO Box
74, Canton CT 06019-0074, BBS: (203)665-1100. Sponsors East
Coast Z-fests.

Sacramento Microcomputer Users Group, PO Box 161513, Sacra-

The Computer Journal / #68

mento, CA 95816-1513, BBS: (916)372-3646. Publishes newsletter,
$15.00 membership, normal meeting is first Thursday at SMUD
6201 S st., Sacramento CA.

CAPDUG: The Capital Area Public Domain Users Group, Newslet-
ter $20, Al Siegel Associates, Inc., PO Box 34667, Betherda MD
20827. BBS (301) 292-7955.

NOVAOUG: The Northern Virginia Osborne Users Group, Newslet-
ter $12, Robert L. Crities, 7512 Fairwood Lane, Falls Church, VA
22046. Info (703) 534-1186, BBS use CAPDUG's.

The Windsor Bulletin Board Users' Group: England, Contact Rodney
Hannis, 34 Falmouth Road, Reading, RG2 8QR, or Mark Minting,
94 .. adley Common, Lakenheath, Brandon, Suffolk, IP27 9BZ, Phone
0842-860469 (also sells NZCOM/Z3PLUS).

LIS.T.: Long Island Sinclair and Timex support group, contact
Harvey Rait, 5 Peri Lane, Valley Stream, NY 11581.

Coleco ADAM:

ADAM-Link User’s Group, Salt Lake City, Utah, BBS: (801)484-
5114. Supporting Coleco ADAM machines, with Newsletter and
BBS.

Adam International Media, Adam’s House, Route 2, Box 2756,
1829-1 County Rd. 130, Pearland TX 77581-9503, (713)482-5040.
Contact Terry R. Fowler for information.

AUGER, Emerald Coast ADAM Users Group, PO Box 4934, Fort
Walton Beach FL 32549-4934, (904)244-1516. Contact Norman J.
Deere, treasurer and editor for pricing and newsletter information.

MOAUG, Metro Orlando Adam Users Group, Contact James Poulin,
1146 Manatee Dr. Rockledge FL 32955, (407)631-0958.

Metro Toronto Adam Group, Box 165, 260 Adelaide St. E., Toronto,
ONT MS5A 1INO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809 W. 33rd
Ave. Bellevue NE 68005, (402)291-4405. Suppose to be oldest
ADAM group.

Vancouver Island Senior ADAMphiles, ADVISA newsletter by David
Cobley, 17885 Berwick Rd. Qualicum Beach, B.C., Canada V9K
IN7, (604)752-1984.

Northem Illiana ADAMS User's Group, 9389 Bay Colony Dr. #3E,
Des Plaines IL 60016, (708)296-0675.

OS-9 Support:

San Diego OS-9 Users Group, Contact Warren Hrach (619)221-
8246, BBS: (619)224-4878.

45

Atari Support:
ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob Drews
(916)423-1573. Meets first Thurdays at SMUD 59Th St. (ed. bldg.).

Forth Support:

Forth Interest Group, PO Box 2154, Oakland CA 94621 510-89-
FORTH. International support of the Forth language. Contact for list
of local chapters.

OTHER PUBLICATIONS

The Z-Letter, supporting Z-System and CP/M users. David A.J.
McGione, Lambda Software Publishing, 149 West Hillard Lane,
Eugene, OR 97404-3057, (503)688-3563. Bi-Monthly user oriented
newsletier (20 pages+). Also sells CP/M Boot disks, software.

The Analytical Engine, by the Computer History Association of
California, 1001 Elm Ct. El Cerrito, CA 94530-2602. A ASCII text
file distributed by Internet, issue #1 was July 1993. E-mail:
kerosby@crayola.win.net.

Z-100 LifeLine, Steven W. Vagts, 2409 Riddick Rd. Elizabeth City,
NC 27909, (919)338-8302. Publication for Z-100 (a S-100 machine).

The Staunch 8/89'er, Kirk L. Thompson editor, PO Box 548, West
Branch TA 52358, (319)643-7136. $15/yr(US) publication for H-8/
89s.

The SEBHC Journal, Leonard Geisler, 895 Starwick Dr., Ann Arbor
MI 48105, (313)662-0750. Magazine of the Society of Eight-Bit
Heath computerists, H-8 and H-89 support.

Sanyo PC Hackers Newsletter, Victor R. Frank editor, 12450 Skyline
Bivd. Woodside, CA 94062-4541, (415)851-7031. Support for or-
phaned Sanyo computers and software.

the world of 68’ micros, by FARNA Systems, PO Box 321, Warner
Robins, GA 31099-0321. E-mail: dsrtfox@delphi.com. New maga-
zine for support of old CoCo’s and other 68xx(x) systems.

Amstrad PCW SIG, newsletter by Al Warsh, 2751 Reche Cyn Rd.
#93, Colton, CA 92324. $9 for 6 bi-monthly newsletters on Amstrad
CP/M machines.

Historically Brewed, A publication of the Historical Computer Soci-
cty. Bimonthly at $18 a year. HCS, 10928 Ted Williams PL., El
Paso, TX 79934. Editor David Greelish. Computer History and
more.

Other Support Businesses

Hal Bower writes, sells, and supports B/PBios for Ampro, SB180,
and YASBEC. $69.95. Hal Bower, 7914 Redglobe Ct., Seven MD
21144-1048, (410)551-5922.

Sydex, PO Box 5700, Eugene OR 97405, (503)683-6033. Sells
several CP/M programs for use with PC Clones (22Disk' format/
copies CP/M disks using PC files system).

Elliam Associates, PO Box 2664, Atascadero CA 93423, (805)466-

8440. Seclls CP/M user group disks and Amstrad PCW products. See
ad inside back cover.

46

Discus Distribution Services, Inc. sells CP/M for $150, CBASIC
$600, Fortran-77 $350, Pascal/MT+ $600. 8020 San Miguel Canyon
Rd., Salinas CA 93907, (408)663-6966.

Microcomputer Mail-Order Library of books, manuals, and periodi-
cals in general and H/Zenith in particular. Borrow items for small
fees. Contact Lee Hart, 4209 France Ave. North, Robbinsdale MN
55422, (612)533-3226.

Star Technology, 900 Road 170, Carbondale CO, 81623. Epson QX-
10 support and repairs. New units also avialble.

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY 10549,
(914)241-0287, BBS: (914)241-3307. 6809/68000 operating system
and software. Some educational products, call for catalog.

Peripheral Technology, 1250 E. Piedmont Rd., Marietta, GA 30067,
(404)973-2156. 6809/68000 single board system. 68K ISA bus com-
patible system. See inside front cover.

Hazelwood Computers, RR#1, Box 36, Hwy 94@Bluffton, Rhineland,
MO 65069, (314)236-4372. Some SS-50 6809 boards and new
68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)202-0150. SS-50 6809
boards and systems. Very limited quanity, call for information.

MicroSolutions Computer Products, 132 W. Lincoln Hwy, DeKalb,
IL 60115, (815)756-3411. Make disk copying program for CP/M
systems, that runs on CP/M sytems, UNIFROM Format-translation.
Also PC/Z80 CompatiCard and UniDos products.

GIMIX/0S-9, GMX, 3223 Arnold Lane, Northbrook, IL 60062,
(800)559-0909, (708)559-0909, FAX (708)559-0942. Repair
and support of new and old 6800/6809/68K/SS-50 systems.

n/SYSTEMS, Terry Hazen, 21460 Bear Creek Rd, Los Gatos
CA 95030-9429, (408)354-7188, sells and supports the MDISK
add-on RAM disk for the Ampro LB. PCB $29, assembled
PCB $129, includes driver software, manual.

Corvatek, 561 N.W. Van Buren St. Corvallis OR 97330,
(503)752-4833. PC style to serial keyboard adapter for Xerox,
Kaypros, Franklin, Apples, $129. Other models supported.

Morgan, Thielmann & Associates services NON-PC compat-
ible computers including CP/M as well as clones. Call Jerry
Davis for more information (408) 972-1965.

Jim S. Thale Jr., 1150 Somerset Ave., Deerfield IL 60015-2944,
(708)948-5731. Sells /O board for YASBEC. Adds HD drives, 2
serial, 2 parallel ports. Partial kit $150, complete kit $210.

Trio Comapny of Checktowaga, Ltd., PO Box 594, Cheektowaga NY
14225, (716)892-9630. Sells CP/M (& PC) packages: InfoStar 1.5
(8160); SuperSort 1.6 ($130), and WordStar 4.0 ($130).

Parts is Parts, Mike Zinkow, 137 Barkley Ave., Clifton NJ 07011-
3244, (201)340-7333. Supports Zenith Z-100 with parts and service.

The Computer Journal / #68

READER TO READER firom page 6
napolis, MD. He wanted me to go over
it to see if the hardware looked usable
and then see if we could get it working
with system disks.

After opening it up, I found two proces-
sor chips, an 8086 and a Z80. There
were parallel and a serial port, 256 k of
RAM and two 5.25 full height drives.
The case appeared to be an upscale copy

of the Kaypro design. Applying power
with no boot disk revealed a decent little

monitor program in ROM. Playing with
the monitor, I determined that the RAM
and both floppy drives were good, that
the video circuits and keyboard all func-
tioned, as did the 8086 processor. Now
to find boot disks! One email call for
help drew a note from Don Maslin say-
ing that he could supply the system disks
for the cost of media and handling! Could
this be REAL? I sent a check and within
the week had the magic media to make
the little jewel come alive! There were
two versions of MS-DOS, version 1.0
and 2.0, as well as CP/M 2.2 for the Z80
side. I booted each disk and made backup
copies of the disks (on which I had just
installed write-protect tabs). That done,
I played a bit with each system to see
how it worked.

The MS-DOS disks offered the basic
tools of that OS and all seemed to work.
1 do not have an MS-DOS machine un-
less you count the Z-100 which my son
runs in CP/M. I never pursued that side
of the Z-100 since most of the software
was written for PC-DOS which was just
enough different that the Z-100 would
scream ‘WILD INTERRUPT’ and quit.
Therefore, my evaluation of the 8086
side of this machine is limited to just a
quick cruise through the OS utilities.
Version 2.0 came with several little utili-
ties that I found nice. The first was called
OPTION EXE and allows one to config-
ure the machine hardware. This con-
figuration is saved in Non-Volatile RAM
and will remain in force until changed
by the program or over-ridden by an
application. (Nice applications should
return the system to the way they found
it.) This was important to me since the
configuration of the hardware also im-
pacted the how the system worked when
under the Z-80 processor.

The Computer Journal / #68

Opt. A — Set the amount of memory: up to 640 k.

Opt. B— Set the number of printers: (0 -3)

Opt. C — Enable/disable the A/D game port.

Opt. D — Startup video mode selection.

Opt. E— Auto Boot Enable/Disable.

Opt. F — Set Number of serial ports: (0- 7)

Opt. G — Set Keyboard key tone. (click - beep)

Opt. H — Set Color or BAW display. (This one is green ;-)
Opt. I — Set PC/XT Compatibility mode. (Not tested)
OptJ — Set Serial Port A (baud, parity, stops, bits)

Opt. K — Set Serial Port B (baud, parity, stops, bits)
Opt.L — Set number of disk drives (1-2)

Opt M — Set Color Palettes (Set this one to green ;-)
Opt. N — Redirect line printer (sesial or parallel port)
Opt. O — Set serial ports (Seequa or IBM Style, untested)
Opt. P — Set scroll Option (fast or slow)

Opt. R — Reset options to factory defaults.

The other utilities are software to estab-
lish a RAM disk, a print spooler, and a
communications program (a quick port
of the CP/M stuff on bulletin boards).

Now for the GOOD stuff! The Z-80 and
CPM 2.2! The system disk sported the
basic CP/M environment utilities and
booted a 64k system with CCP at E400,
BDOS at EC06, and BIOS at FA00.
Exploration of this system was just a bit
slow at first until I was able to define the
disk format so I could work with the OS
on my regular machine with Z-System
utilities. The ASM and LIB files sup-
plied are generic MDS-800 files and do
not contain the Seequa - Chameleon
specifics. Therefore, to find out things
about the system, I needed to PEEK ram
in the BIOS area. This, too, was a bit
frustrating as some of the BOOT code is
overwritten when no longer needed -
good programming practice to conserve
memory, but tough on peekers.

The break came during formatting and
sysgen process on a new disk. I noticed
that the disk space decreased when the
disk was sysgened. This meant that there
was a directory entry for the boot system.
Direct read of the disk using the monitor
revealed a CPM80.SYS file with high
bits set to SYSTEM status. Clearing this
flag gained access to the system tracks
using DUMP or DDT. Now I was cook-
ing! Examination of the bios Disk Pa-
rameter information allowed me to set
up my machine to read/write the
Chameleon’s disk format. Also, I now
had the machine specific information on
ports, etc. From this file, we can build
the correct CBIOS.ASM file to allow
development of the system. I'll not go
any further down this path— don’t want
to steal all of the fun! The disk format
information is of vital interest to any one
wishing to develop or assist someone

with one of these machines. So, I'll

divulge what I know:

Disk type — Soft sectored, 5.25 inch,
40 track, Single or Double Sided, Double
Density.

STAT DSK: d:DSK: command displayed the following:
(where d: is the disk drive being read)
2528 : 128 byte record capecity
316 : k-byte drive capecity
64 : 32 byte directory entries
64 : Checked directory entries
256 : Records / Extent
16 : Records / Block
32 : Sectors / Track
1 : Reserved track

Listening to the disk drive stepping dur-
ing format hinted that we wrote outside
to inside tracks on side 0 and inside to
outside tracks on side 1. This proved to
be the case for formatting, but not for
disk reads and writes. So, set your emu-
lator for SSDD or DSDD, DD on Track
0 - side 0, all sectors side O then all
sectors side one (DSDD), 5.25 inch
media, 300 RPM, 2k allocation size, and
512 physical sector size. Configure the
rest as follows:

Single Double Sided
Skew factor 1 1
Start sector 1 1
Physical sectors/track 8 8
Physical tracks/side 40 (28h) 40
Logical sectors/track 32 (20h) 32
Block shift 3 4
Block mask 7 15 (OFh)
Extent mask 1 1
Disk size -1 155 (9Bh) 157 (9Dh)
Directory maximum -1 63 (3Fh) 63
Allocation 0, 1 192, 0 (0COh)128, 0 (80h, Oh)
Check size 16 (10h) 16
Track offset 1 1
Skew table 1,2,3,4,5,6,7,8 (same)

Next, I was interested in how the unit
would work with ZCPR. Everything
worked under NZCOM (ZCPR 3.4) with-
out a single hitch. The terminal behaves
very well when treated as a TVI-920.
The resulting system (full ZCPR sys-
tem) only occupied 8k, leaving a 57k
TPA. Since I don’t have schematics or
much experience with this machine, I
can’t speak to the ease or expensc of
adding a hard disk. If this feat can be
reasonably accomplished, one could
easily have a really neat luggable unit.

To sum it all up, keep your eyes pealed
at yard sales and flea markets. This little
box can be a lot of fun for not much
money! - Ken.

Great Ken! Sounds like you had lots of
Sun. Thanks. Bill.

47

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Soldering Strange Tales
» Bulld an S-100 Floppy Disk Controlier:
WD2707 Controller for CP/M 88K

. Turbo Puscal: series

. : The Arcane Art

« Anslog Deta Acquisition & Control:
[cting Your Computer to the Real

3 <

series
v-uuymmaoscwum-y
: series

Yolume Number 4

« lssues 26 1o 31

*Bus 3 a System Bus

* Using the 88180 Reel Time Clock

* The for the SCSt
Adepter

* inside

* NEW.DOS: The CCP Commands
(continued)

* ZSIG Comer

« Affordeble C

« Concurrent Multitasking: A Review of
DoubleDOS

» 68000 nt Hawthome's Low Cost
16.bit SBC and Operating System

* The Art of Source Code Generation:
Disassembling Z.

System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation . .
* The C Column: A Graphics Primitive

Package

« The Hitachi HDG4180: New Life for 8-bit
Systems

* ZS1G Comer. Command Line Generators
and Allases

* A Tutor Program in Forth: Wiiting a Forth
Tulor in Forth

« Disk Parameters: Modifying the CPM Disk
Parameter Block for Foreign Disk Formats
« Starting Your Own BBS

« Build an A/D Corwerter for the Ampro Little
Board

* HDG4180: Selting the Wait States & RAM
Refresh using PRT & DMA

« Using SCSI for Real Time Control

= Open Letter to STD Bus Manufacturers

* Patching Turbo Pascal

« Choosing a Language for Machine Control

48

« Better Software Filter Design

» MDISK: Adding & 1 Meg RAM Disk to
Ampro Little Board, Part 1

* Using the Hitachi hd64180: Embedded
Processor Desig

n
= 88000: Why use a new OS and the 880007
DMngmm7MdhChlp

* ZCPR3 IOP for the Ampro Little Board

* 3200 Hackers' Language

* MDISK: Adding 8 1 Meg RAM Disk to
2

-Node
« Using SCSI for Generalized VO
:J:ommunm with Floppy Disks: Disk
F r ir variat
« XBIOS: A Replacement BIOS for the
S8180
+ KOS ONE and the SAGE: Demystitying
Op:mmg Systems R

gning a Y

ARUNZ

Program
« The ZCPR3 Corner:

Documentation

Issue Number 32:
- 15 copies now available -

issue Nymber 33:
* Data File Conversion: Writing a Filter to
Convert Foreign File Formats

* Advenced CPM: ZCPR3PLUS & How to
Write Self Relocating Code

« DetaBase: The First in & Series on Data
Bases and information Processing

» SCSI for the S-100 Bus: Another Example
of SCSr's Versatility

* A Mouse on any Hard\ Impk i

* Real C 9: NS32032 hard for
experimenter, CPUs in series, software

* SPRINT: A review.

+ REL-Style Assembly Language for CPM
& ZSystems, part 2.

« Advanced CP/M.
programming.

Issye Number 37:
« C Pointers, Arrays & Structures Made
Easier. Part 1, Pointers.
» ZCPR3 Corner: Z-Nodes, patching for
NZOOM ZFILER.

Engineering: Basic C:
ﬁdds field doﬁnmon client worksheets.
* Shells: Using ZCPR3 named shell
variables to store date variables.
« Resident Prog A detailed look at
TSRs & how they can lead to chaos.
» Advanced CP/M: Raw and cooked console
10.
* Real Computing: The NS 32000.
« ZSDOS: Anatomy of an Operating Syst
Part 1.

Issue Number 38:
» C Math: Handling Dollars and Cents With
[o]

Environmental

« Advanced CPM: Batch Processing and a
New ZEX.

« C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

* The Z-System Comer. Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

» Information Engineering: The portabie

the Mouse on a Z80 System

* Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services

+ ZCPR3 Comer. ARUNZ Shelis & Patching
WordStar 4.0

Age.

* Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.

« Shells: ZEX and hard disk backups.

» Real Computing: The National
Semiconductor

« ZSDOS: Anatomy of an Operatmg System,

issue Number 41:
* Forth Column: ADTs, Object Oriented
Concepts.
« Improving the Ampro LB: Overcoming the
88Mb hard drive limit.
» How to add Data Structures in Forth
« Advanced CPM: CPM is hacker's haven,
and Z-System Command Scheduler.

« The Z n Comer. Extended Muiltiple
Command Line, and aliases.
« Programming disk and printer functions
with C

. LINKPRL: Making RSXes easy.
*» SCOPY. Copying a series of unrelated
files.

Issue Number 42:

* Dy ic M All All
memory at runtime wnh examples in Fonh

« Using BYE with NZCOM.

¢« C and the MS-DOS Screen Character
Attributes.

+ Forth Column: Lists and object oriented
Forth,

* The Z-System Comer. Genie, BDS Z and
Z-System Fundamentals.

» 868705 Embedded C ller A i
An exampie of a single-chip microcontroller
application.

« Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.
« Real Computing: The NS 32000.

Issue Number 43:

» Standardize Your Floppy Disk Drives.

« A New History Shell for ZSystem.

« Heath's HDOS, Then and Now.

* The ZSystem Corner. Software update
service, and customizing NZCOM.

* Graphics Programming With C. Graphics
routines for the IBM PC, and the Turbo C
graphics library.

+ Lazy Evaluation: End the evaluation as
soon as the result is known.

* $-100: There's still life in the old bus.

« Advanced CP/M: Passing parameters, and
complex error recovery.

» Real Computing: The NS32000.

1 mber 44;

« Animation with Turbo C Part 1: The Basic
Tools.

« Multitasking in Forth: New Micros F63FC11
and Max Forth.

- Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

= DosDisk: MS-DOS disk format emulator for

o Adh d CP/M: ZMATE and using lookup
h for p

* Real Compuhng TheN832000

* Forth Column: Handling Strings.

+ Z-System Comer: MEX and telecommuni-

issye Nymber 34:
* Developing a File Encryption System. Pat 2.
« Database: A continuation of the data base
primer series. {ssue Number 39; cPm.
« A Simple Emmbummng + Prog ing for Perf ;A bly
an embedded controller Itit: g Language techniq and di
exacutive. « Computer Aided Publishing: The Hewlett
s ZCPR3: Relocatable code, PRL files, Packard LaserJet.
ZCPR34, and Type 4 programs. . Tho Z-SVstom Corner: System
« New Microcontroliers Have Chips ts with NZCOM. cations.

with BASIC or Forth in ROM are easy to

program.

+ Advanced CP/M: Operating system
axdensions o BDOS and BIOS, RSXs for CP/
M22

* Macintosh Data File Conversion in Turbo
Pascal.

fssve Nymber 35:

« All This & Modula-2: A Pascal-like
altemative with scope and parameter passing.
= A Short Course in Source Code Gombon
Disassembling 8088 softy to p

« Generating LaserJet Fonts: A review of
Digi-Fonts.

o Ady

M. Maki

9 old progi z
aware.

« C Pointers, Arrays & Structures Made

Easier. Part 3: Structures.

« Shells: Using ARUNZ alias with ZCAL.

« Real Computing: The National

Semiconductor NS320XX.

Issue Number 40:

* Programming the LaserJet. Using the

modifiable assem. source code.
+ Real Computing: The NS32032.
» §-100: EPROM Bumer project for S-100
hardware hackers.
« Advanced CPM: An up-to-date DOS, plus

« Beginning Forth Column: Introduction.

» Advanced Forth Column: Variant Records
and Modules.

» LINKPRL: Generating the bit maps for PRL
files from a REL file.

Issye Number 43:

+ Embedded Systems for the Tenderfoot:
Getting started with the 8031.

+ The Z-System Comer: Using scripts with
MEX

* The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

« Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

+ Advanced CP/M: String searches and
tuning Jetfind.

« Animation with Turbo C: Part 2, screen
interactions.

* Real Computing: The NS32000.

issue Nymber 46
« Build a Long Distance Printer Driver.

« Using the 8031's built-in UART for serial
eommunmuom

« Found 1 ek sl

details on file structure and formats. * WordTech's dBXL: Writing your own
« REL-Style Assembly Language for CPM igned busi prog
and Z-System. Part 1: Selecting your « Ach d CPM: ZEX 5.0xThe hi
sssembler, linker and debugger. and the hnguapo
Issue Number 3¢; g ® Y
hngumbohmquu
* Information Engineering: Introduction. + Programming Input/Output With C:
* Modula-2: A list of reference books. Keyboard and screen funct
- T t & Control: . The Z-System Corner. Remot

Agncul;anl computer application.
« ZCPR3 Comer. Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

systems and BDS C.
» Real Computing: The NS320XX

in Modula 2.

« The Z-System Comer: Pttchmg The Word
Plus spell checker, and the ZMATE macro
text editor.

« Animation with Turbo C: Text in the
graphics mode.

The Computer Journal / #69

« 280 Communications Gateway:
Prototyping, Counter/Timers, and using the

The Computer Journal Back Issues

2 years (12 issues)
Back issues (CA tax)

add these shipping costs for each issue ordered

280 CTC.] ! !)
+ PMATE/ZMATE Macros ' Analog Signal Generation : g;n:; :odd XEROX 820
Issye Number 47; + Z-System Corner, The Trenton Festival ” Real Computing
» Controlling Stepper Motors with the « Z-Best Software, the Z3HELP System . . Mutt ng Part il
8BHC11F lssve Number 8% processi
N issue Number §2: - Home Automation with X10 - Z-System Comer
. ms?m“ o mr. i:ATE Macro Language « YASBEC, The Hardware - File Transfer Protocols . eaoo. Opontl. ing Symm. s
+T-1: What it is & Why You Need toKnow = An Arbitrary Waveform Generator, Pt. 1 - MDISK at 8 MHZ. - Reminiscing and Musings
* ZCPR3 & Modula, Too = B.Y.O. Assembler...in Forth - Real CanMng Drives
« Tips on Using LCDs: Interfacing to the * Getting Started in Assembly Language, Pt 3~ ghe“ Sort w
68HC70S - The NZCOM 10P - Introduction to Forth - SmallC?
-+ Real Computing: Debugging, NS32 Mufti- * Servos and the FE8HC11 - Center Fold last XEROX 820
tasking & Distributed Systems « Z-System Corner, Programming for ' DR S-100
’ - ZAT Last! - DR §-100
» Long Distance Printer Driver: comection Compatibility P g
« ROBO-SOG 90 + Z-Best Software ! | i " Part IV
« Real Computing, X10 Revisited Issue Number 80, Moving Forth
ipsys Nymber 45: + PMATE/ZMATE Macros - Multitasking Forth * Z-Systsm Comer
+ Fast Math Using Logarithms « Controlling Home Heating & Lighting, Pt 3 * Computing Timer Values - Small Systems
« Forth and Forth Assembier « The CPU280, A High Performance Single- * Affordable Deveiopment Tools - Mr. Kaypro
« Moduts-2 and the TCAP Board Computer * Real Computing + IDE Drives Part i
« Adding a Bernoulli Drive to a CP/M - Z-System Comer
_Computer (Buikling & SCS! Interface) I - Mr. Kaypro ——
« Review of BDS 'Z" - The CPU280 -DR. 8100 ~Small System Support
« PMATE/ZMATE Macros, Pt. 1 Local Area Networks . Center Fold ZX80/81
. i;gmnpggnmg‘r Patching MEX-Plus and Roe I;anp:ﬂi etom @ - Moving Forth -DR $100
. d ng -Plus ai ea ng .
TheWord, Using ZEX Zed Fest 91 - Center Fold IMSA| MPU-A ool
+ Z.Best Software - 2.System Comer - Developing Forth Applications - PCIXT Comer
} - Getting Started in Assembly Language - Real Computing . Litthe Circuits
Mﬂm‘. . N - The NZCOM IOP - Z-System Comer Levels of Forth
* Comp Power P . Z-BEST Software - Mr. Kaypro Review . Sinclair ZXB1
« Floppy Disk Alignment w/RTXEB, Pt. 1 - DR. $-100 nclai
« Motor Control with the F6SHC11 issue Number 54; . . .
« Controliing Home Heating & Lighting, Pt 1~ 7.Syatem Comer tasye Number 60 Issye Nymber 8¢:
« Getting Started in Assembiy Language -BY.O. Assembier - Moving Forth Part I “ Small SFOY':'“ Support
* LAN Basics - Local Area Networks - Center Fold IMSAI CPA .DRS100
» PMATE/ZMATE Macros, Pt 2 . Advanced CPM - Four for Forlh. Real puting
* Real Computing - ZCPR on a 16-Bit intel Platform * Real Computing - Con M°°" no. \DE Drives
« 2-System Comer - Real Computing - Debugging Forth) - PCIXT Comer
+ Z-Best Software - Interrupts and the Z80 - Support Groups for Classics - Little Cirouits
saue Number 50; BMHZ on a Ampro e Kaypro e - Multprocessing Part i
) - Hardware Heavenn . * Mr. Kaypro Review .z
* Officad a System CPU with the Z181 - What Zilog never told you about the Super8 - DR. $-100 -System Corner
* Floppy Disk Alignment w/RTXEB, Pt. 2 - An Arbitary Waveform Generator '
'W.WWMF“HF1,1 - The Development of TDOS Issue Nuymber 61; %
. and the C: Line . - Multiprocessing 6800 part | 4 pport
« Controlling Home Heating & Lighting, Pt 2 Issys Number $8: . Center Fold XEROX 820 - Center Fold. SS-5(/SS-30
« Getting Started in Assembly Language Pt 2 Fuzzilogy 101 - Quality Control g:?dwm
* Local Area Networks - The Cyclic Redundancy Check in Forth - Real Computing ‘) s‘d.°°‘| T eru s
* Using the ZCPR3 I0P - The Intermetwork Protocol (IP) - Support Groups for Classics Dpvogiimisig
« PMATE/ZMATE Macros, Pt. 3 - 2-System Corner - 2-System Comer o Part§
» Z-System Comer, PCED . Hardware Heaven - Operating Systems - CPM ng Forth
» 2-Best SMm - Real Computing + Mr. Kaypro SMHZ - European Beat
* Real Computing, 32FX16, Caches - Remapping Disk Drives through the Vitual
4
* 1ssue Number 54; BIOS Issue Number 62: !!!H!M Small System Support
" . i ici - SCSI| EPROM Programmer
* Introducing the YASBEC P emuing Mathmatician - Conter Fold XEROX 820 - Center Fold: Pertec/Mits 4PIO
. Flpppy Disk Alignment wIRTXEB pPt3 . Z.BEST re . DR S-100 - Z-System Comor]
« High Speed Modems on Eight Bit Systems) Softwa - Real Computing - Real Computing
+ A Z8 Talker and Host esue N) Moving Forthi part I - PC/XT Comer
* Local Area Networks—Ethemet lssus Numbar 36: e - 2.System Comer - Lithe Cirouits
* UNIX Connectivity on the Cheap - Input nsion for 8031 - Programming the 8526 CIA - Multiprocessing Forth Part 4
* PC Hard Disk Partition Table . Con mExpang IDE Drives to 8-8it S s - Reminiscing and Musings + Mr. Kaypro
. A&oppod 'Me""c:o:‘or:h Technique for ~ Real Computing ’ Scripts
intelligent Real-Time Embedded Control j ;_g‘:;",: in Forth \8sue Number &3; SPECIAL DISCOUNT
bg?' °°'“P""'i"°- the 32CG160, Swordfish, | @ 84 Direct File Transfers - SCS| EPROM Programmer part It 15% on cost of Back Issues when
Command Processor buying from 1 to Current Issue.
4 us. Canada/Mexico Europe/Other N
Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Name:
tyear (6 issues) $24.00 $32.00 $34.00 $34.00 $44.00 Address:

$44.00 $60.00 $64.00 $64.00 $84.00

Bound Volumes $20.00 ea

#20 thru #43 are $3.00 ea.
#44andup are $4.00ea.
Software Disks (CA tax) add these shipping costs for each 3 disks ordered
MicroC Disks are $6.00ea

+$3.00 +$350 +$650 +%$4.00 +$17.00
+$1.00 +$1.00 +$1.25 +$1.50 +$2.50
+$125 +$125 +$1.75 +$200 +$3.50 CreditCard # ’ - : exp___/
Payment is accepted by check, money order, or Credit Card (M/C,
VISA, CarteBlanche, Diners Club). Checks must be in US funds,
+$1.00 +$1.00 +$1.25 +$1.50 +$250 Grawn on a US bank. Credit Card orders can call 1(800) 424-8825.

items: Back Issues Total
MicroC Disks Total TC]_IbaLQmputeL.lQumal
California state Residents add 7.25% Sales TAX .
Subscription Total P.0. Box 535, Lincoln, CA 95648-0535
\ Total Enclosed Phone (916) 645-1670 J

The Computer Journal / #69 49

The Computer Corner

By Bill Kibler

For many issues in TCJ I have talked
about a universal operating system. We
have reviewed CP/M and will be review-
ing OS9 in greater detail as well. In the
last two issues I mentioned and reviewed
Forth Inc’s polyForth. Since my interest
is really on building a universal operat-
ing system that any 8 bit user could use
or adapt with little problem, my interest
in polyForth has to do with their features
that would guide us in a better design of
the universal system.

There are many Forths on the market,
just as there are many types of clone
machines. Sometimes it is nice to have
the original product and polyForth is as
close to the original Forth as one can
get. The difference between getting an
original Forth and an the original IBM
PC is that the Forth version works very
well unlike those first PC’s.

I am not here to sell polyForth but to
explain how looking at it can help us
better understand the task ahead, if we
want to truly produce an operating sys-
tem that can run on any small 8 bit
system. We can help that understanding
by looking at features that might be use-
ful to implement.

One feature that polyForth has, and
which is common in all operating sys-
tems, is virtual [/O. They have chosen a
method of virtual disk I/O that has many
advantages that I feel you need to know
about. To understand their choice also
requires a little background in how op-
erating systems handle disk I/O.

DISK I/O
Since a large percentage of our readers

are CP/M based, let us use that as a base
implementation. To review the idea of

50

CP/M, it is to isolate the hardware fea-
tures from the software requirements.
Thus if hardware platforms vary in how
they do YO (terminals, printers, disks,
etc.) the running software program still
runs on all variations of hardware pos-
sible.

This isolation between hardware and
software came by separating the disk
and I/O requests from those of the actual
hardware. The BDOS provides a list of

BASIC (DOS- DISK Operating Sys-
tem) functions, that make requests of the
BIOS (BASIC Input & Output System)
that is specific to the hardware design.
Although easy to see why this was done,
before CP/M almost all programs were
written for specific hardware and would
not run on other platforms.

Through the use of the BDOS interface
our software program gets a VIRTUAL
view of the I/O. In the case of the termi-
nal, we can just send data to it without
understanding the physical type or inter-
face protocol used. The same is true for
the DISK I/O. The BDOS sets up an
imaginary disk structure which is used
the same in all implementations.

Since this article is really food for
thought, I will leave the greater details
for a later time. The simple details of
CP/M however relies on the use of
BLOCK PARAMETER TABLES. These
tables convert the virtual disk data loca-
tions into a physical disk track and sec-
tor location. Thus a request for a certain
block of data, gives a corresponding track
and sector value to the BIOS for re-
trieval.

Forth in the beginning

The good points of this type of operation

are the isolation of physical disk design
from the program, and similar operation
across platforms. A negative point is the
need to have single disk capacities large
enough for a given program. Since each
disk has it’s own block table and they
may be different from disk to disk or
disk type, it doesn’t provide a truly VIR-
TUAL disk structure then.

Forth was designed in the early days of
computing and saw this problem from a
different view point. The virtual concept
started with terminal character size. All
terminals then, were 60 characters by 16
lines. This size also amounts to a 1K
(1024 bytes) buffer space. So Chuck
Moore used this screen size as the con-
trolling factor in the design of Forth.

His idea was limiting coding design to
ONE screens worth. These single screen
worth he called BLOCKS. From a pro-
grammers point of view, each block
would represent a single idea or proce-
dural part of the program. The disk file
system then gets broken into 1K seg-
ments that each represent a single pro-
gram function. Much like the disk pa-
rameter table, each block is given asingle
block number. Unlike CP/M however,
since Forth rides on top of the operating
system, the block numbering need not
end when the disk is full.

Before the days of hard disk systems,
four or more floppy disks were not un-
usual. Most programs could use the other
disks, but only when directly referenced.
Your program would not run if the disks
were out of order, or a failure happened
to one of the drives. I remember being
unable to use programs because they hard
coded drive designations and made no
means for altering them.

The Computer Journal / #69

Chuck’s answer was virtual block num-
bering. At boot time you mount the drives
and their beginning and last block num-
ber (more on mounting later). Since you
always have access to the source code,
changing this mounting procedure is
possible in cases of problems. You can
also mount as many as you like and have

. their block number continue from one
disk to the other. From the programmers
view point, they have a virtual disk of
unlimited size. From a users view, I
mount the range of blocks I need at the
moment as well as being unconcerned
about disk size.

Now many systems mount disks. Mount-
ing a disk, is in essence telling the disk
operating system, the size and nature of
the media just attached to the system.
Al PCDOS disk have an ID table in the
first sector that provides this informa-
tion (track/sectors/sides). UNIX systems
use mounting to attach the disk into the
directory structure. Operating systems
“like NT will also have some method of
mounting that tells the system which
operating system to emulate when load-
ing and running programs from that disk.

TOO many variations

For readers of TCJ, having so many
variations of disk systems and disk for-
mats is a big problem. I find the Forth
method something worth considering.
Frank Sergeant’s PYGMY Forth uses
this method as well as polyForth. Try
PYGMY Forth, it’s free to start with,
and see how Frank arranged his blocks
and programs. Consider then, that each
grouping of blocks could be a separate
disk or ROM,

Suppose you have an embedded control-
ler that needs a large menu of user func-
tions. Our 64K system could have the
main portion in the lower 32K or 32
blocks of program. The upper 32K might
be multiple 32K ROMs. The program
deals with one list of blocks, while the
kernel switches banks of ROMs as the
block numbers increase (64,96,128,
etc...).

I found blocks very beneficial when do-

ing my master’s tutorial program. The
ability to load a given block by number

The Computer Journal / #69

made the tutorial a snap to produce.
Trying to use pointers or markers in a
single file structure would have made
the program many more times complex
and very difficult to change.

DO IT VIRTUALLY

Whatever operating system you currently
use, you are doing virtual I/O. When
working with embedded controllers and
small systems, the design or features of
the virtual I/O become important. If you
have massive amounts of horse power,
disk space, and screen to squander, then
understanding or taking advantage of
your I/O is probably of little concern.

When we continue the discussion of an
universal small system operating plat-
form, usage of the virtual I/O will be
very important. I think some concept
along the lines of Forth’s block system,
with it’s ability to span multiple disks
should be considered.

Z180ISA and CP/M CDROM?

I talked to ZWorld last week after read-
ing their newsletter. Seems they just re-
leased a Z180 PC104 board. The fine
print however indicated an ISA bus (PC/
XT format) card will be released in Oct/
Nov of this year. They promise to send
me more information soon. So I guess I
can stop designing one myself.

Actually I would like to know if anyone
has started (or finished) porting ZCPR/
CPM to any of ZWorld's products or any
modern products like the PC104 board.
We really need to have a list of new
products and their implementations. So
drop me a note if you've done this. I
think the PC104 might offer some real
impressive features, not to mention speed
and display options. What's the PC104
interface? Well the PC Bus is rather
large and for embedded work small is
the main consideration. So people started
stacking very small size cards. The stan-
dard pin configuration is the small as
the XT and AT bus, just they are vertical
pin and sockets, not the card edge and
no backplane BUS! (More later.)

I called Walnut Creeck CDROM (800-
786-9907) just before each issue to see if

the CP/M CDROM is ready. This time I
was promised it would be mastered next
weekend (Sept 19) with shipment the
following week. Now I have been prom-
ised this before, but the lady said it really
is going then and I will get mine soon.
Hopefully by the time you get this issue.

SMALL PLC?

I was reading B&B catalog (815-434-
0846) the other day at work and saw
they have a small PL.C program for PCs.
It is designed to work with their line of
parallel I/O devices, but can be
adaptedeasily to any I/O structure. I have
run it and it works, only it uses simple
ladder structure. Real complex ladder
functions aren’t possible. It looks like it
is done in Pascal and would provide
some simple training on hoe PLC's work.
It will run in the background, so I guess
you could use it on an XT or any system
you have on all the time.

The items I like are data acquisition
products, all based on serial and parallel
port usage. Their parallel port is $99
and with the $99 price of the PLC pro-
gram it all would be a bit high for a PLC
system with only 8 I/O lines, but then
with the cost of PC/XT’s at $5 each, it
still comes out cheaper than most com-
mercial PLC products. Maybe we can do
one for less, hmmmmm...

Speaking of PC/XT's, I saw something
that made me appreciate CP/M. I have a
flyer explaining a program that will run
on DOS, or Windows, or OS2. What
caught my eye was the needed space for
each platform. Both windows and OS2
needed 400K of disk space with 160K of
memory, all for a simple background
program. How do I know it is simple, the
DOS version needs 40K of disk space
and 4K of RAM. The only expression I
can think of to compare this to is a fly
swatter to a nuclear bomb. Now of course
CP/M proably would only need 4K of
disk and about half a K of RAM, but
then that is only a guess.

Next time?
My pile of to be talked about is getting

large so next time maybe a slightly longer
Computer Corner? Will see.

51

TCJ CLASSIFIED

CLASSIFIED RATES!
$5.00 PER LISTING!

TCJ Classified ads are on a prepaid basis
only. The cost is $5.00 per ad entry.
Support wanted is a free service to sub-
scribers who need to find old or missing
documentation or software. Please limit
your requests to one type of system.

Commercial Advertising Rates:

Size Once 4+
Full $120 $90
1/2 Page $75 $60
1/3 Page $60 $45
1/4 Page $50 $40
Market Place $25 $100/yr
Send your items to:
The Computer Journal
P.O. Box 535

Lincoln, CA 95648-0535

Historically Brewed. The magazine of
the Historical Computer Society. Read
about the people and machines which
changed our world. Buy, scll and trade
"antique" computers. Subscriptions $18,
or try an issue for $3. HCS, 10928 Ted
Williams Place, El Paso, TX 79934.

Wanted: Good complete floating-point
package (IEEE single and/or double pre-
cision) for the 8051 Micro. Should be
public domain, but commercial better
than nothing. Send info to tilmann.reh@
hrz.uni-siegen.d400.de.

Wanted: Mother board for one of the
following Kaypro 4X, 2X, or possibly a
1984 Kaypro 2. Charles Brown, Box
1046, Twin Peaks, CA 92391 (909)337-
3049,

For Sale: Radio Shack Model 11, 64K,
very nice, runs great, CPM2.24, lots of
manuals and software. $65 plus ship-
ping. Call 805-491-3421. Ask for Charlie
or leave message.

52

For Sale: 2 XT computers, $50 each, 2
101-Key KB's, $12 ea. 3 Epson printers,
$50 ea. 30 copies of CC;Mail DOS plat-
form pack w/8 users, V3.2, $100 ea/
offer on all. Compaq portable, IBMKB's,
HP terminal, Toshiba 321 SL, Xerox
workstation CPU (80186 & NS proces-
sors) circa 1982: Make offers. Misc. elec-
tronic parts; fans, fuses, tubes, power
supplies, ask. Mark Mowery, 400 W. 5th
#42, Grandview, WA 98930-1254, Tel.
(509)882-2940.

Notice: PseudoCorp has moved. The
new address is : 921 Country Club Road,
Suite 200, Eugene, OR 97401.

6811 and 8051
Hardware & Software

Supporting over thirty versions
with a highly integrated
development environment..

Our powerful, easy to use
FORTH runs on both the PC
host and Target SBC with very
low overhead

Low cost SBC's from
$84 thru developers systems.
For brochure or applications:

AM Research
4600 Hidden Oaks Lane
Loomis, CA 95650
1(800)947-8051
sofia@netcom.com

Electronic
Design

6619 Westbrook Dr.
Citrus Heights, CA 95621

Dave Baldwin

Voice/Fax (916) 722-3877
DiBs BBS (916) 722-5799

SUPPORT
OUR
ADVERTISERS
TELL THEM
"I SAW IT IN
TCJ"

$79.95 ssucsi

A1 Version - $59.95 Single Board
Computer
Develop Your

Own Projects SBC-E2

Programs completely from PC via
RS-232. 2048 Bytes EEPROM.
256 Bytes RAM. 24 - TTL I/O Bits.
8 - 8 bit A/D Inputs. SPI.

SBC-E2 is low power CMOS, <20 ma, 5 volts
DC. 3.1 x 3.6". FREE Boatloader, 480 pages of
documentation, schematics, utilities, sample
programs and source code included.
Add $3.50 shipping. MD residents add %5 tax.
Pre-paid or COD only.

LDG . 1445 Parran Road
Electronics st. Leonard MD

410-586-2177 20685

The Computer Journal / #69

o,

irket Place

TC ’ The Computer Journal

Discover
The Z-Letter
The Z-letter is the only publication
exclusively for CP/M and the Z-System.
' Eagle computers and Spelibinder support.
Licensed CP/M distributor.

2

 Subscriptions: $18 US, $22 Canada and
Mexico, $36 Overseas. Write or call for

Advent Kaypro Upgrades

TurboROM. Aliows flexible
configuration of your entire
system, read/write additional
formats and more, only $35.

Replacement Floppy drives and
Hard Drive Conversion Kits. Call
or write for availability & pricing.

free sample. consitutes a new advertisement
The Z-Letter at first time insertion rates.
Lambda Software Publishing Call (91':3)4::3-0312 i Mail ad or contact
c1s eves, weekends or write The Computer Journal
13149 We%g‘;g%‘i%%‘; Chuck Stafford P.0. Box 536
ugene, % 4000 Norris Ave. Lincoln, CA 95648-053§
(503) 688-3563 Sacramento, CA 95821 \ y.

" TCJ MARKET PLACE \

Advertising for small business
First Insertion: $25
Reinsertion: $20
Full Six issues $100
Rates include typesetting.

Payment must accompany order.

VISA, MasterCard, Diner's Club,
Carte Blanche accepted.

Checks, money orders must be
US funds. Resetting of ad

CP/M SOFTWARE

| 100 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $19.95
Il plus $3.00 shipping and handling. Also, MS/PC-DOS Soft-
-ware. Disk Copying, including AMSTRAD. Send self addressed,

Il stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

| s-100/1€€€-696

IMSAl Altair
Compupro Morrow
Cromemco
and more!

£ TR T LTI RN SSRERLLR e

Cards. Docs - Systems
Dr. S-100

Herb Johnson,
CN 5256 #1065,
Princeton, NJ 08543
(609) 771-1503

THE FORTH SOURCE

Hardware & Software

MOUNTAIN VIEW
PRESS

Glen B. Haydon, M.D.

Route 2 Box 429
La Honda, CA 94020

(415) 747 0760

NEW MAGAZINE

the world of 68' micros
supporting
Tandy Color Computer
0§8-9 & OSK

$23/year for 8 issues

$30/year Canada/Mexico
$35/year overseas

Published by:
FARNA Systems
P.O. Box 321
Warner Robins
GA 31099-0321

81/2°x11" * Or Photocopier
Sheets Use household
100% MBG iron to apply.

PP BLUE - PoP WET

for High Precision

Professional P(B Layouts ‘ Quality PB's
1. LaserPrint 1. LaserPrint
£. lron-On 2. lron-On
3. Pesl-Off 3. Soak-Off w/ Water
4. €xch 4. €ich
An Extra Layer of Resist Tronsfers Laser or
for Super Fine Traces Copier Toner as Resist

20Sh$30/405h$50/100Sh$100 Blue/liet (No Mix)|
Sample Pack 5 Shts Blue + 5 Shts Wet $20
VISRIMC/POICHIMO $4 S&H - 2ad Day Mall

Techniks Inc. P.O. Box 463 Ringoes NJ 08551

(908)788-8249

mlc Stamp Helpful application notes

s |
/ . h q
$39 single-board computer runs BASIC T ewoae, e u
as A/D converters.

|2
O g-:m tosesos Radio Shack e T
Sl B et oq1
4 © -
5 ﬁ 233358 o The Stamp can measure s L o
Tosoooo K resistance with just a few o scoces * out
e — low-cost parts. SASCEIANP " ° -_-}_ °

 BASIC language includes instructions for serial I/0, PWM,
potentiometer input, pulse measurement, button
debounce, tone generation, etc.

Consumes just 2 mA (typical) or 20 pA (sleep).

Special bable connects Stamp to PC parallel port for
programming. ‘

L » Has 8 digital 1/0 lines, each programmable as an input or

output. Any line can be used for any purpose. Programming Package includes PC cable, software,

manual, and technical help for $99.
» Small prototyping area provides space for connecting
signals and extra components.

Individual Stamps may be purchased for $39.

« Powered by 5-12 VDC or 9-volt battery. Requires 8086-based PC (or better) with 3.5” disk drive.

|

|

E

% 4 -7 7\ 1 (916) 624-8333 « Fax: 624-8003 « BBS: 624-7101

- L \/ 7 Parallax, Inc. » 3805 Atherton Road, #102 » Rocklin, CA 95765 » USA
BULK RATE
TC}_I[I_E_QQIDPHIELJQHHIEI US POSTAGE
Post Office Box 535 PAID
Lincoln, CA 95648-0535 Lincoln, CA
United States PERMIT NO. 91

ADDRESS CORRECTION REQUESTED
FORWARDING AND RETURN POSTAGE
GUARANTEED

Telephone: (916) 645-1670

